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ABSTRACT

This paper examines the level of interdependence and volatility transmission across
major exchanges of corn, wheat, and soybeans in the United States, Europe, and Asia. We
follow a multivariate GARCH approach to explore in detail and under different specifica-
tions the dynamics and cross-dynamics of volatility in agricultural futures markets. We
account for the potential bias that may arise when considering exchanges with different
closing times. The period of analysis is 2004-2009 for corn and soybeans and 2005-
2009 for wheat. The results indicate that there is a strong correlation among international
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between most of the exchanges. There is also higher interaction between the United States
(Chicago) and both Europe and Asia than within the latter. The results further show the
major role Chicago plays in terms of spillover effects over the other markets, particularly
for corn and wheat. In the case of soybeans, both China and Japan also exhibit impor-
tant cross-volatility spillovers. Finally, the level of interdependence between exchanges
has not necessarily increased in recent years for all commodities. From a policy perspec-
tive, these findings suggest that any potential regulatory scheme to address (excessive)
price volatility in agricultural exchanges should be coordinated across markets; localized
regulation will have limited effects given the high level of interrelation between markets.
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In recent years, we have been witness to dramatic increases in both the level and volatility

(fluctuations) of international agricultural prices. This has raised concern about unexpected

price spikes as a major threat to food security, especially in less developed countries where

food makes up a high proportion of household spending. The unprecedented price spikes

in agricultural commodities during the 2007-2008 food crisis, coupled with shortages and

diminishing agricultural stocks, resulted in reduced access to food for millions of poor people

in a large number of low income, net food-importing countries. The recent escalation of

several agricultural prices, particularly corn and wheat, and the prevailing high price volatility

have all reinforced global fears about volatile food prices. Attention has turned, then, to further

examining food price volatility in global markets.

It is fairly well established that traders in exchange markets, including hedgers and spec-

ulators, base their decisions on information generated domestically but also on information

from other markets (Koutmos and Booth (1995)). In the case of agricultural exchanges, the

important development of futures markets in recent decades, combined with the major in-

formational role played by futures prices, have in fact contributed to the increasing interde-

pendence of global agricultural markets.1 Identifying the ways in which international futures

markets interact is consequently crucial to properly understanding price volatility in agricul-

tural commodity markets. Moreover, potential regulatory arrangements to address excessive

price volatility in agricultural markets, which are currently being debated within the European

Union (EU), United States, and The Group of Twenty (G-20), can be properly evaluated when

linkages and interactions across exchanges are taken into account. The effectiveness of any

proposed regulatory mechanism will depend on the level and forms of interrelation between

markets.

This study evaluates the level of interdependence and volatility transmission in major agri-

cultural exchanges in the United States (Chicago, Kansas), Europe (France, United King-

1As a reference, the average daily volume of corn futures traded in the Chicago Board of Trade (CBOT)
has increased by more than 250% in the last 25 years (Commodity Research Bureau, Futures database). Studies
providing evidence that spot prices move toward futures prices in agricultural markets include Garbade and Silver
(1983), Crain and Lee (1996), Yang, Bessler, and Leatham (2001), and Hernandez and Torero (2010).
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dom), and Asia (China, Japan). In particular, we examine the dynamics and cross-dynamics

of volatility across futures markets for three key agricultural commodities: corn, wheat, and

soybeans. The period of analysis is 2004-2009 for corn and soybeans and 2005-2009 for

wheat. We follow a multivariate GARCH (hereafter MGARCH) approach that allows us to

evaluate whether there is volatility transmission across exchanges, the magnitude and source

of interdependence (direct or indirect) between markets, and ultimately how a shock or inno-

vation in a market affects volatility in other markets. In particular, we estimate four MGARCH

models: diagonal T-BEKK, full T-BEKK, CCC, and DCC models.2

The paper contributes to the literature in several aspects. First, it provides an in-depth

analysis of volatility transmission across several important exchanges of different agricultural

commodities. Most of the previous research efforts have either examined price volatility of

agricultural commodities under a univariate approach or have focused on the interdependence

and interaction of agricultural futures markets in terms of the conditional first moments of

the distribution of returns (Yang, Zhang, and Leatham (2003)).3 We explore futures markets

interactions in terms of the conditional second moment under a multivariate approach, which

provides better insight into the dynamic price relationship of international markets.4 Second,

and contrary to previous related studies, we account for the potential bias that may arise when

considering agricultural exchanges with different closing times. We synchronize our data by

exploiting information from markets that are open to derive estimates for prices when markets

are closed. Third, our sample period allows us to examine if there have been changes in the

dynamics of volatility due to the recent food price crisis of 2007-2008, a period of special

2The diagonal and full BEKK models stand for Engle and Kroner (1995) multivariate models; the acronym
BEKK comes from synthesized work on multivariate models by Baba, Engle, Kraft, and Kroner, while T indi-
cates that we use a T-student density in the estimations (for reasons that will become clear later). The CCC model
is Bollerslev (1990) Constant Conditional Correlation model, while the DCC model is Engle (2002) Dynamic
Conditional Correlation model.

3Two exceptions are precisely Yang, Zhang, and Leatham (2003) and von Ledebur and Schmitz (2009). The
former examine volatility transmission in wheat between the United States, Canada and Europe using a BEKK
model; the latter examine volatility transmission in corn between the United States, Europe and Brazil using a
restrictive specification.

4Our study is more in line with Karolyi (1995), Koutmos and Booth (1995), and Worthington and Higgs
(2004), who examine volatility transmission in stock markets using multivariate models.
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interest with unprecedent price variations. Finally, we estimate several MGARCH models to

analyze in detail the cross-market dynamics in the conditional volatilities of the exchanges.

The estimation results indicate that there is a strong correlation among international mar-

kets. In particular, we find both own- and cross-volatility spillovers and dependence between

most of the exchanges considered in the analysis. There is also a higher interaction between

Chicago and both Europe and Asia than within the latter. The results further indicate the major

role of Chicago in terms of spillover effects over the other markets, particularly for corn and

wheat. In the case of soybeans, both China and Japan also show important cross-volatility

spillovers. In addition, the level of interdependence between exchanges has not necessarily

shown an upward trend in recent years for all commodities. From a policy perspective, the

results suggest that if agricultural futures markets are decided to be regulated to address exces-

sive price volatility, regulation needs to be coordinated across borders (exchanges); localized

regulation of markets will have limited effects given the high level of interdependence and

volatility transmission across exchanges.

The remainder of the paper is organized as follows. The next section presents the econo-

metric approach used to examine volatility transmission among major agricultural exchanges.

The subsequent section describes the data and how we address the problem of asynchronous

trading hours among the markets considered in the analysis. The estimation results are re-

ported and discussed next, while the concluding remarks are presented at the end.

I. Model

To examine interdependence and volatility transmission across futures markets of agricultural

commodities, different MGARCH models are estimated. The estimation of several models

responds to the different questions we want to address and serves to better evaluate the cross-

market dynamics in the conditional volatilities of the exchanges using different specifications.

3



Following Bauwens, Laurent, and Rombouts (2006), we can distinguish three non-mutually

exclusive approaches for constructing MGARCH models: i) direct generalizations of the uni-

variate GARCH model (e.g. diagonal and full BEKK models, factor models), ii) linear com-

binations of univariate GARCH models (e.g. O-GARCH), and iii) nonlinear combinations of

univariate GARCH models (e.g. CCC and DCC models, copula-GARCH models).5 Given the

objective of our study, we apply the first and the third approach in the analysis.6 We estimate

the diagonal T-BEKK, full T-BEKK, CCC, and DCC models.

The crucial aspect in MGARCH modeling is to provide a realistic but parsimonious speci-

fication of the conditional variance matrix, ensuring its positivity. There is a dilemma between

flexibility and parsimony. Full BEKK models, for example, are flexible but require too many

parameters for more than four series. Diagonal BEKK models are much more parsimonious

but very restrictive for the cross-dynamics; they are not suitable if volatility transmission is

the sole object of the study. CCC models allow to separately specify the individual conditional

variances and the conditional correlation matrix of the series, but assume constant conditional

correlations. DCC models allow, in turn, for both a dynamic conditional correlation matrix

and different persistence between variances and covariances, but impose common persistence

in the covariances.

Consider the following model,

yt = µt(θ)+ εt , εt |It−1 ∼ (0,Ht) (1)

where {yt} is an N× 1 vector stochastic process of returns, with N being the number of ex-

changes considered for each of the three agricultural commodities to be studied (corn, wheat,

and soybeans), θ is a finite vector of parameters, µt(θ) is the conditional mean vector, and εt

is a vector of forecast errors of the best linear predictor of yt conditional on past information

5O-GARCH is the orthogonal MGARCH. Examples of copula-GARCH models include Patton (2000) and
Lee and Long (2009).

6The second approach basically relies on principal component analysis and requires a large number of uni-
variate processes for the estimation.
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denoted by It−1. The conditional mean vector µt(θ) can be specified as a vector of constants

plus a function of past information, through a VAR representation for the level of the returns.

For the BEKK model with one time lag, the conditional variance matrix is defined as

Ht = C′C +A′εt−1ε
′
t−1A+B′Ht−1B (2)

where ci j are elements of an N×N upper triangular matrix of constants C, the elements ai j

of the N×N matrix A measure the degree of innovation from market i to market j, and the

elements bi j of the N ×N matrix B show the persistence in conditional volatility between

markets i and j. This specification guarantees, by construction, that the covariance matrices

are positive definite. A diagonal BEKK model further assumes that A and B are diagonal

matrices.

For the CCC model, the conditional variance matrix is defined as

Ht = DtRDt = (ρi j
√

hiith j jt) (3)

where

Dt = diag(h1/2
11t ...h

1/2
NNt), (4)

hiit = ωi +αiε
2
i,t−1 +βihii,t−1, (5)

i.e., hiit is defined as a GARCH(1,1) specification, i = 1, ...,N, and

R = (ρi j) (6)

is a symmetric positive definite matrix that contains the constant conditional correlations, with

ρii = 1∀i.
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An alternative approach involves introducing a time-dependent conditional correlation ma-

trix. The DCC model is defined in such a way that

Ht = DtRtDt (7)

with Dt defined as in (4), hiit defined as in (5), and

Rt = diag(q−1/2
ii,t )Qtdiag(q−1/2

ii,t ) (8)

with the N×N symmetric positive-definite matrix Qt = (qi j,t) given by

Qt = (1−α−β)Q̄+αut−1u′t−1 +βQt−1, (9)

and uit = εit/
√

hiit . Q̄ is the N×N unconditional variance matrix of ut , and α and β are non-

negative scalar parameters satisfying α+β < 1. The typical element of Rt will have the form

ρi j,t = qi j,t√qii,tq j j,t
.

II. Data

We have daily data on closing prices for futures contracts of corn, wheat, and soybeans

traded on different major exchanges across the world, including Chicago (CBOT), Kansas

(KCBT), Dalian-China (DCE), France (MATIF), United Kingdom (LIFFE), Japan (TGE),

and Zhengzhou-China (ZCE). The United States, EU, and China are major players in global

agricultural markets and trade while Japan is a major importer, and the exchanges considered

are basically the leading agricultural futures markets in terms of volume traded. China is a

special case considering that it is both a major global producer and consumer of agricultural

products, but at the same time it is a locally oriented and highly regulated market.
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The data was obtained from the futures database of the Commodity Research Bureau

(CRB). Table I details the specific exchanges and commodities for which we have data, as

well as their starting sample period, price quotation, and contract unit. The final date in our

sample is June 30, 2009.

Provided that futures contracts with different maturities are traded every day on different

exchanges, the data will be compiled using prices from the nearby contract, as in Crain and

Lee (1996). The nearby contract is generally the most liquid contract. To avoid registering

prices during the settlement month or expiration date, the nearby contract to be considered is

the one whose delivery period is at least one month ahead. Due to different holidays across

exchanges, for example, we only include in the estimations those days for which we have

available information for all exchanges.

The analysis consists of separately examining market interdependence and volatility trans-

mission across three different exchanges per commodity. In the case of corn, we exam-

ine the dynamics and cross-dynamics of volatility between the United States (CBOT), Eu-

rope/France (MATIF), and China (Dalian-DCE); for wheat, between the United States, Eu-

rope/London (LIFFE), and China (Zhengzhou-ZCE); for soybeans, between the United States,

China (DCE), and Japan (Tokyo-TGE).7 The starting date is chosen according to the exchange

with the shortest data period available for each agricultural commodity. Since the contract

units and price quotations vary by market, all prices are standardized to US dollars per met-

ric ton (MT).8 This allows us to account for the potential impact of the exchange rate on the

futures returns.

The daily return at time t is calculated as yt = log(St/St−1), where St is the closing fu-

tures price in US dollars at time t. Table II presents descriptive statistics of the returns series

considered, multiplied by 100, for each of the three agricultural commodities. Sample means,

medians, maximums, minimums, standard deviations, skewness, kurtosis, the Jarque-Bera

7We find very similar results when considering the Kansas City Board of Trade (KCBT) instead of CBOT for
wheat. Further details are available upon request.

8The data for exchange rates were obtained from the Federal Reserve Bank of St. Louis.
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statistic, and the corresponding p-value are presented. CBOT exhibits, on average, the highest

return across markets for all agricultural commodities and the highest standard deviation for

corn and wheat.

The distributional properties of the returns appear to be non-normal in all the series. As

indicated by the p-value of the Jarque-Bera statistic, we reject the null hypothesis that the

returns are well approximated by a normal distribution. The kurtosis in all markets exceeds

three, indicating a leptokurtic distribution. Given these results, we use a T-student density

(instead of a normal density) for the estimation of the BEKK models. For details on the

T-student density estimation for MGARCH models, see Fiorentini, Sentana, and Calzolari

(2003).

Table II also presents the sample autocorrelation functions for the returns and squared-

returns series up to two lags and the Ljung-Box (LB) statistics up to 6 and 12 lags. The LB

statistics for the raw returns series reject the null hypothesis of white noise in some cases,

while the LB statistics for the squared returns reject the null hypothesis in most cases. The

autocorrelation for the squared daily returns suggests evidence of nonlinear dependency in the

returns series, possibly due to time varying conditional volatility.

Figure 1, in turn, shows the daily returns in each of the three exchanges considered for

each commodity. The figure indicates time-varying conditional volatility in the returns. The

figure also provides some evidence of cross-market influences across exchanges. These results

motivate the use of MGARCH models to capture the dependencies in the first and second

moments of the returns within and across exchanges.

A. The Asynchronous Problem

Given that the exchanges considered in the analysis have different trading hours, potential

bias may arise from using asynchronous data. To address this issue, we follow Burns, Engle,

and Mezrich (1998) and Engle and Rangel (2009) and compute estimates for the prices when
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markets are closed, conditional on information from markets that are open. We synchronize

the data before proceeding to estimate the models described in the previous section.

Figure 2 illustrates the problem of using asynchronous data. Consider, for example, that

we want to synchronize the returns of corn futures in France (MATIF) with the returns in

Chicago (CBOT), which closes later. The synchronized return in France can be defined as

y f s,t = y f u,t−ξ f ,t−1 +ξ f ,t (10)

where y f u,t is the observed, unsynchronized return in France at t and ξ f ,t is the return that

we would have observed from the closing time of France at t to the closing time of Chicago

at t. Following Burns, Engle, and Mezrich (1998), we estimate the unobserved component

using the linear projection of the observed unsynchronized return on the information set that

includes all returns known at the time of synchronization.

First, we express the asynchronous multivariate GARCH model as a first order vector

moving average, VMA(1), with a GARCH covariance matrix

yt = νt +Mνt−1, Vt−1(νt) = Hν,t (11)

where M is the moving average matrix and νt is the unpredictable component of the returns,

i.e., Et(yt+1) = Mνt .

Next, we define the unsynchronized returns as the change in the log of unsynchronized

prices, yt = log(St)− log(St−1), whereas the synchronized returns are defined as the change

in the log of synchronized prices, ŷt = log(Ŝt)− log(Ŝt−1). The expected price at t + 1 is

also an unbiased estimator of the synchronized price at t, provided that further changes in
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synchronized prices are unpredictable, i.e., log(Ŝt) = E(log(St+1)|It). Thus, the synchronized

returns are given by

ŷt = Et(log(St+1))−Et−1(log(St))

= Et(yt+1)−Et−1(yt)+ log(St)− log(St−1)

= Mνt−Mνt−1 + yt

= νt +Mνt . (12)

Finally, the synchronized vector of returns and its covariance matrix can be estimated as

ŷt = (I + M̂)νt , Vt−1(ŷt) = (I + M̂)Ĥν,t(I + M̂)′ (13)

where I is the N×N identity matrix and M̂ contains the estimated coefficients of the VMA(1)

model.

We estimate M based on a vector autoregressive approximation of order p, VAR(p), fol-

lowing Galbraith, Ullah, and Zinde-Walsh (2002). The estimator is shown to have a lower bias

when the roots of the characteristic equation are sufficiently distant from the unit circle, and it

declines exponentially with p. Since we work with returns data, the choice of a modest order

for the VAR provides a relatively good approximation of M.

In particular, M is estimated as follows. The VMA(1) is represented as the following

infinite-order VAR process

yt =
∞

∑
j=1

B jyt− j +νt (14)

where the coefficients of the matrices B j are given by

B1 = M1,

B j = −B j−1M1, for j = 2, .... (15)

10



By applying a VAR approximation, we can obtain the VMA coefficients from those of the

VAR. We fit the VAR(p) model with p > 1 by least squares. From the p estimated coefficient

matrices of dimension N×N of the VAR representation yt = B1yt−1 + ...+ Bpyt−p + νt , we

estimate the moving average coefficient matrix of dimension N×N by the relation M̂1 = B̂1

based on (15).

The results from the synchronized daily returns are finally compared with those from the

(unsynchronized) weekly returns to select p.9 For different p values, we compare the contem-

poraneous and one-lag correlations (among exchanges) of the synchronized daily returns with

the correlations obtained when using weekly returns. We find similar results for p = 2 through

p = 5. For parsimony, we select p = 2.

Table III shows the contemporaneous correlation across exchanges for each commodity.10

We report the correlations for asynchronous, weekly, and synchronized returns. Daily corre-

lations seem to be smaller when markets are highly asynchronous.

A better measure of the unconditional correlation can be obtained from weekly returns.

As noted above, such data are less affected by the timing of the markets since the degree of

asynchronicity is lower. In general, weekly correlations are larger than daily correlations, and

the synchronized returns correlations are closer to the weekly correlations than the unsynchro-

nized returns correlations. For example, the correlation between CBOT and TGE is 0.127 for

daily data, 0.455 for weekly data and 0.384 when using the synchronized data.11 These results

suggest, then, that the synchronization method appears to solve the problem introduced by

asynchronous trading.

9Weekly returns are used as a measure to correct unconditional correlation between markets. Such data are
relatively unaffected by the timing of the markets since the degree of asynchronicity is much lower (Burns, Engle,
and Mezrich (1998)).

10One-lag correlations are available upon request.
11The descriptive statistics of the synchronized returns are similar to those of the unsynchronized returns. To

save space, we only report the summary statistics of the unsynchronized returns.
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III. Results

This section presents the estimation results of four MGARCH models applied to examine

volatility transmission in agricultural exchanges. These include the diagonal T-BEKK, full T-

BEKK, CCC, and DCC models. Examining volatility as the second moment provides further

insight into the dynamic price relationship between markets. As noted above, we estimate

T-BEKK models instead of standard BEKK models because the normality of all the returns in

our sample is rejected at the 95% significance level and the kurtosis is greater than three in all

cases.

Table IV reports the estimated coefficients and standard errors of the conditional variance

covariance matrix for the diagonal T-BEKK model. The aii coefficients, i = 1, ...,3, quantify

own-volatility spillovers (i.e. the effect of lagged own innovations on the current conditional

return volatility in market i). The bii coefficients measure own-volatility persistence (i.e. the

dependence of the conditional volatility in market i on its own past volatility). The results

indicate that own-volatility spillovers and persistence are statistically significant across most

of the markets considered for each agricultural commodity. Own innovation shocks appear to

have a much higher effect in China than in the other exchanges. This market, however, also

exhibits the lowest volatility persistence; in the case of Zhengzhou (wheat), it is not significant

at the conventional levels. This could be explained by the fact that China is a regulated market

where own information shocks could have a relatively important (short-term) effect on the

return volatility, but where past volatility does not necessarily explain current volatility (as

in other exchanges) due to market interventions. Contrary to China, exchanges in the United

States, Europe and Japan derive relatively more of their volatility persistence from within the

domestic market.12

12We later examine how sensitive our estimation results are when we exclude China from the analysis.
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From the results, we can also infer that there are interactions, at least indirect via the co-

variance, between exchanges.13 In the case of corn and soybeans, the conditional covariance

between any pair of markets shows persistence and is affected by information shocks that oc-

cur in one or both markets. In the case of wheat, only the conditional covariance between

Chicago and LIFFE shows persistence and may vary with innovations in one of the markets;

the covariance between China (ZCE) and Chicago and China and LIFFE does not show per-

sistence.

Our results differ, for example, from the results of von Ledebur and Schmitz (2009) who

apply a diagonal BEKK model to analyze market interrelations between the United States

(CBOT), France (MATIF) and Brazil for corn during 2007-2008. They find that the condi-

tional covariance between CBOT and MATIF (and between CBOT and Brazil) is not affected

by information shocks that could occur in one or both markets. They link this result to a

partial decoupling of the U.S. market from the other markets due to a politically induced mar-

ket development and a tight supply situation during the period of analysis. von Ledubur and

Schmitz, however, do not account for the non-normality of some of the series analyzed (they

use a diagonal BEKK instead of a diagonal T-BEKK model), and for the difference in trading

hours between exchanges, which could be affecting the magnitude and significance of their

results.

We now turn to the full T-BEKK model, which can provide further insights into the dy-

namics of direct volatility transmission across exchanges. Contrary to the diagonal T-BEKK,

this model does not assume that A and B are diagonal matrices in equation (2), allowing for

both own- and cross-volatility spillovers and own- and cross-volatility dependence between

markets. Table V presents the estimation results using this model. The off-diagonal coeffi-

cients of matrix A, ai j, capture the effects of lagged innovations originating in market i on the

conditional return volatility in market j in the current period. The off-diagonal coefficients

of matrix B, bi j, measure the dependence of the conditional volatility in market j on that of

13See Appendix A for further details on the conditional variance and covariance equations for the different
MGARCH models.
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market i. The Wald tests, reported at the bottom of Table V, reject the null hypothesis that the

off-diagonal coefficients, ai j and bi j, are jointly zero at conventional significance levels.

Several patterns emerge from the table. First, the own-volatility spillovers and persistence

in all markets are very similar to those found with the diagonal T-BEKK model. These own

effects are generally large (and statistically significant) pointing towards the presence of strong

GARCH effects. Second, the cross-volatility effects, although smaller in magnitude than the

own effects, indicate that there are spillover effects of information shocks and volatility per-

sistence between the exchanges analyzed. In the case of information shocks, past innovations

in Chicago have a larger effect on the current observed volatility in European and Chinese

corn and wheat markets than the converse, which points towards the major role CBOT plays

in terms of cross-volatility spillovers for these commodities. For soybeans, the major role of

Chicago is less clear. There is a relatively large spillover effect from CBOT to China (DCE),

but the effect from DCE to CBOT is also important; Japan similarly shows a large spillover

effect (especially over China). Yet, in terms of cross-volatility persistence, there is a relatively

important dependence of the observed volatility in the Chinese soybeans market on the past

volatility in CBOT.

The results with this model differ from those of Yang, Zhang, and Leatham (2003) who

also use a full BEKK model to examine volatility transmission in wheat between the United

States (CBOT), Europe (LIFFE) and Canada for the period 1996-2002. The authors find that

the U.S. market is affected by volatility from Europe (and Canada), while the European market

is highly exogenous and little affected by the U.S. and Canadian markets. However, they

recognize that the exogeneity and influence of the European market could be overestimated

due to the time zone difference of futures trading between Europe and North America. We

precisely find a major role of CBOT in terms of volatility transmission when controling for

differences in trading hours across exchanges.

Despite the increase in the production of corn-based ethanol in recent years as well as the

many regulations and trade policies governing agricultural products (like temporary export

14



taxes and import bans), it is interesting that CBOT still has a leading role over other futures

exchanges, including China’s closed, highly regulated market. This result confirms the im-

portance of Chicago in global agricultural markets. The fact that China has spillover effects

over other exchanges (at least in soybeans) is also remarkable, and is probably because China

is both a major global producer and consumer of agricultural products. Thus, any exoge-

nous shock in this market may also affect the decision-making process in other international

markets.

Table VI shows the results for the CCC model. In this specification, the interdependence

of unconditional volatilities across markets is captured by the correlation coefficients ρi j. The

results show that the correlations between exchanges are positive and statistically significant

at the 1% level for the three agricultural commodities, which implies that markets are interre-

lated. In general, we observe that the interaction between the United States (CBOT) and the

rest of the markets (Europe and Asia) is higher compared with the interaction within the latter.

In particular, the results show that the interaction between CBOT and the European markets

is the highest among the exchanges for corn and wheat. The results also indicate that China’s

wheat market is barely connected with the other markets, while in the case of soybeans, China

has a higher association with CBOT than Japan, similar to the findings with the full T-BEKK

model.

Even though the CCC model does not allow us to identify the source of volatility trans-

mission, it helps us to address whether there is interaction among markets, as well as the

magnitude of interdependence. The DCC model, in turn, generalizes the CCC model, allow-

ing the conditional correlations to be time varying. Table VII presents the estimation results

for the DCC model. Parameters α and β can be interpreted as the “news” and “decay” pa-

rameters. These values show the effect of innovations on the conditional correlations over

time, as well as their persistence. For the three commodities, the estimated “news” parameters

are small (α < 0.01); only for corn α is statistically significant at the 5% level. For corn and
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wheat, the estimated parameters show a slow “decay” (β > 0.98) and are significant at the 1%

level. In the case of soybeans, there is no persistence (β≈ 0) nor significance.

Figure 3 shows the dynamic conditional correlations (ρi j,t) estimated with the DCC model.

For corn, we observe high variability in the correlation between CBOT and MATIF (ranging

from 0.20 to 0.55), with peak values after the 2007-2008 crisis. It is also clear that the three

estimated conditional correlations among corn exchanges have shown an upward trend in re-

cent years. The same high variability and upward trend is observed in wheat when looking at

the dynamics of the conditional correlation between Chicago and Europe (LIFFE). The other

two correlations among wheat exchanges (CBOT-ZCE and LIFFE-ZCE), in contrast, do not

show an upward trend, although they (moderately) increased during the recent crisis. For

soybeans, the three dynamic conditional correlations are rather constant, coinciding with the

unconditional correlations estimated with the CCC. This is also deduced from the estimated

values of both α and β, which are close to zero in the case of soybeans.

It is worth noting that the residual diagnostic statistics, reported at the bottom of Tables

IV-VII, generally support adequacy of the model specifications considered. In particular, the

Ljung-Box (LB) statistics, up to 6 and 12 lags, show in most cases no evidence of autocorre-

lation in the standardized residuals of the estimated models at a 5% level.

Considering that markets in China are highly regulated (and locally oriented), we also

evaluate the robustness of our findings when excluding the corresponding Chinese exchanges

(Dalian and Zhengzhou). In the case of corn, we both restrict the analysis to Chicago and

MATIF and consider Japan (TGE) instead of Dalian; for wheat and soybeans, we just restrict

the analysis to Chicago and LIFFE and Chicago and TGE. The estimation results are reported

in Tables X-XIII and Figure 5 in Appendix B. Overall, the results are qualitatively similar to

our base results, suggesting that our findings are not sensitive to the inclusion or exclusion of

China. We still observe a high correlation between exchanges, particularly between Chicago

and both Europe and Japan, as well as higher spillover effects from Chicago to the other
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markets than the converse. Similarly, only corn and wheat exchanges exhibit an increasing

level of interdependence in recent years.

A. Volatility Transmission Across Time

Next, we examine whether the dynamics of volatility transmission between futures markets

has changed across time, particularly after the recent food price crisis of 2007-2008 with

unprecedent price variations. To divide our working sample into a period pre-crisis and a

period post-crisis, we apply the test for the presence of structural breaks proposed by Lavielle

and Moulines (2000). Compared to other tests for structural breaks, the test developed by

Lavielle and Moulines is more suitable for stronlgy dependent processes such as GARCH

processes (Carrasco and Chen (2002)).

Similar to Benavides and Capistrán (2009), we apply the test over the square of the syn-

chronized returns, as a proxy for volatility. Table XIV in Appendix B reports the break dates

identified for each of the series of interest.14 Most of the breaks are during the first semester

of 2008, period where the food crisis was felt most severely. Based on these break dates, we

then divide the whole sample for each commodity into two different subsamples as follows:

September 23rd 2004 until February 26th 2008 and June 30th 2008 until June 30th 2009 for

corn; May 10th 2005 until June 22nd 2007 and November 5th 2008 until June 30th 2009 for

wheat; and January 5th 2004 until February 26th 2008 and August 1st 2008 until June 30th

2009 for soybeans.

Tables VIII and IX present the estimation results of the full T-BEKK model for the periods

pre- and post-crisis, based on the structural breaks identified above for each commodity. Over-

all, the pattern of own- and cross-volatility dynamics among the futures markets analyzed does

not appear to have changed considerably when comparing the period before the food price cri-

14The test of Lavielle and Moulines searches for multiple breaks over a maximum number of pre-defined
possible segments, and uses a minimum penalized contrast to identify the number of breaking points. We allowed
for two and three segments as the maximum number of segments and 50 as the minimum length of each segment,
obtaining similar results.
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sis with the period after the crisis. Similar to the full-sample estimations, we generally observe

large and statistically significant own-volatility spillovers and persistence suggesting the pres-

ence of strong GARCH effects. The only important variation when comparing the two periods

is the much stronger own-volatility persistence exhibited by wheat exchanges after the crisis.

The cross-volatility effects, in turn, are jointly statistically significant in both periods, sup-

porting the presence of cross spillovers of innovation shocks and cross-volatility persistence

between the exchanges. In general, the magnitudes of the cross effects are relatively smaller

than the own effects in most markets, similar to our base results. The Wald tests, however,

further indicate that the cross effects are remarkably stronger for corn and weaker for wheat in

the period post-crisis, relative to the period pre-crisis; for soybeans, the degree of transmission

does not appear to have changed between periods. This pattern closely resembles the dynamic

conditional correlations across markets estimated with the DCC model for each commodity

(see Figure 3). The results also confirm the leading role of Chicago in terms of volatility

transmission over the other markets in recent years.

B. Impulse-Response Analysis

In this subsection, we perform an impulse-response analysis to approximate the simulated

response of exchanges, in terms of their conditional volatility, to innovations separately orig-

inating in each market. This exercise is based on the estimation results of the full T-BEKK

model (reported in Table V) and provides a clearer picture about volatility spillovers across

exchanges.

Impulse-response functions are derived by iterating, for each element hii resulting from

expression (2), the response to a 1%-innovation in the own conditional volatility of the market
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where the innovation first occurs.15 The responses are normalized by the size of the original

shock to account for differences in the initial conditional volatilities across exchanges.

Figure 4 presents the impulse-response functions for the three commodities as a result

of innovations originated in each of the markets analyzed. For corn and soybeans, the plots

show the impulse-response coefficients up to 100 days after the initial shock. For wheat, the

plots show the responses up to 200 days, given the high persistence observed in these markets

(especially from responses to innovations arising in Chicago).

Consistent with the results shown above, the impulse-response functions confirm that there

are important cross-volatility spillovers across markets and that Chicago plays a leading role in

that respect, particularly for corn and wheat. The case of soybeans is interesting since a shock

originated in CBOT, equivalent to 1% of its own conditional volatility, results in a higher

(almost double) initial increase in China’s own conditional volatility. Yet, a shock in China

also has an important (although minor) effect on Chicago, while an innovation in Japan has

a comparable effect on China. Another interesting pattern that emerges from the figure is the

lack of persistence in the impulse-response functions corresponding to the Chinese markets:

the adjustment process is very fast after an own or cross innovation. This is consistent with

the fact that these markets are regulated, which provides further support to the robustness of

our results.

IV. Concluding Remarks

This paper has examined the dynamics and cross-dynamics of volatility across major agricul-

tural exchanges in the United States, Europe, and Asia. We focus on three key agricultural

commodities: corn, wheat, and soybeans. We analyze futures markets interactions in terms of

the conditional second moment under a multivariate GARCH approach, which provides better

15It is worth mentioning that the estimated residuals from the full T-BEKK model are generally uncorrelated
across exchanges for each commodity, reason why we center the analysis on volatility spillover effects from
innovations separately originating in each market.
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insight into the dynamic interrelation between markets. We further account for the potential

bias that may arise when considering agricultural exchanges with different closing times.

The estimation results indicate that the agricultural markets analyzed are highly interre-

lated. There are both own- and cross-volatility spillovers and dependence between most of the

exchanges. We also find a higher interaction between the United States (Chicago) and both

Europe and Asia than within the latter. Furthermore, Chicago plays a major role in terms of

spillover effects over the other markets, especially for corn and wheat. China and Japan also

show important cross-volatility spillovers for soybeans. Additionally, the degree of interde-

pendence across exchanges has not necessarily increased in recent years for all commodities.

The leading role of Chicago over other international markets is interesting despite specific

regulations and trade policies governing agricultural products, especially in closed, highly

regulated markets like China. This result confirms the importance of the United States in

global agricultural markets. The fact that China has spillover effects over other exchanges is

similarly remarkable. The results further suggest that there has not been any decoupling of the

U.S. corn market from other markets after the ethanol boom of 2006.

Besides providing an in-depth analysis on futures markets’ interrelations, this study in-

tends to contribute to the debate on alternative measures to address excessive price volatil-

ity in agricultural exchanges that threatens global food security. The current food situation

is of highly volatile agricultural prices in international markets, which urges of careful and

appropiate measures to attenuate it. The results obtained suggest that any potential regula-

tory scheme on futures markets should be coordinated across markets; for example, through

a global independent unit. Any local regulatory mechanism will have limited effects given

that the exchanges are highly interrelated and there are important volatility spillovers across

markets.

To conclude, it is important to stress out that the analysis above has focused on the volatil-

ity dynamics across markets in the short-run. Similarly, we have not accounted for potential

asymmetries that may exist in the volatility transmission process. Future research should ex-
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amine long-term dynamics in volatility transmission across exchanges, which could provide

further insights about the mechanisms governing the interdependencies between agricultural

markets. Likewise, asymmetries in volatility transmission should be incorporated into the

analysis. Certainly, good news in a market may produce a different effect on another market

than bad news, which could bring additional information to further understand agricultural

market interrelations and help in any policy design.
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Appendix A. Conditional Covariance in MGARCH Models

In the BEKK model with one time lag and three markets (N = 3), the conditional covariance matrix Ht

defined in equation (2) can be expanded as follows,

Ht =


c11 0 0

c12 c22 0

c13 c23 c33




c11 c12 c13

0 c22 c23

0 0 c33



+


a11 a21 a31

a12 a22 a32

a13 a23 a33




ε2
1,t−1 ε1,t−1ε2,t−1 ε1,t−1ε3,t−1

ε2,t−1ε1,t−1 ε2
2,t−1 ε2,t−1ε3,t−1

ε3,t−1ε1,t−1 ε3,t−1ε2,t−1 ε2
3,t−1




a11 a12 a13

a21 a22 a23

a31 a32 a33



+


b11 b21 b31

b12 b22 b32

b13 b23 b33




h11,t−1 h12,t−1 h13,t−1

h21,t−1 h22,t−1 h23,t−1

h31,t−1 h32,t−1 h33,t−1




b11 b12 b13

b21 b22 b23

b31 b32 b33

 . (A1)

The resulting variance equation for market 1, for example, is equal to

h11,t = c2
11 +a2

11ε
2
1,t−1 +2a11a21ε1,t−1ε2,t−1 +a2

21ε
2
2,t−1

+ 2a11a31ε1,t−1ε3,t−1 +a2
31ε

2
3,t−1 +2a21a31ε2,t−1ε3,t−1

+ b2
11h11,t−1 +2b11b21h12,t−1 +b2

21h22,t−1

+ 2b11b31h13,t−1 +b2
31h33,t−1 +2b21b31h23,t−1. (A2)

The covariance equation for markets 1 and 2, in turn, is equal to

h12,t = c11c12 +a11a12ε
2
1,t−1 +a21a22ε

2
2,t−1 +a31a32ε

2
3,t−1

+ (a11a22 +a21a12)ε1,t−1ε2,t−1 +(a11a32 +a31a12)ε1,t−1ε3,t−1

+ (a21a32 +a31a22)ε2,t−1ε3,t−1 +b11b12h11,t−1

+ b21b22h22,t−1 +b31b32h33,t−1 +(b11b22 +b21b12)h12,t−1

+ (b11b32 +b31b12)h13,t−1 +(b21b32 +b31b22)h23,t−1. (A3)
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In the case of the diagonal BEKK model, where A and B are diagonal matrices, the variance equa-

tion for market 1 is given by

h11,t = c2
11 +a2

11ε
2
1,t−1 +b2

11h11,t−1 (A4)

while the covariance equation for markets 1 and 2 is equal to

h12,t = c11c12 +a11a22ε1,t−1ε2,t−1 +b11b22h12,t−1. (A5)

The conditional covariance matrix Ht for the CCC model defined in equation (3), also with one

time lag and N = 3, can be characterized as follows,

Ht =


h1/2

11,t 0 0

0 h1/2
22,t 0

0 0 h1/2
33,t




1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1




h1/2
11,t 0 0

0 h1/2
22,t 0

0 0 h1/2
33,t

 (A6)

where hii,t is defined as a GARCH(1,1) specification, i = 1, ...,3, and ρi j represents the conditional

correlation between markets i and j. The variance equation for market 1 is equal to

h11,t = ω1 +α1ε
2
1,t−1 +β1h11,t−1, (A7)

while the covariance equation for markets 1 and 2 is given by

h12,t = [(ω1 +α1ε
2
1,t−1 +β1h11,t−1)(ω2 +α2ε

2
2,t−1 +β2h22,t−1)]1/2

ρ12. (A8)

Similarly, the corresponding conditional covariance matrix Ht for the DCC model defined in equa-

tion (7) is equal to

Ht =


(

h11,t
q11,t

)1/2
0 0

0
(

h22,t
q22,t

)1/2
0

0 0
(

h33,t
q33,t

)1/2

Qt


(

h11,t
q11,t

)1/2
0 0

0
(

h22,t
q22,t

)1/2
0

0 0
(

h33,t
q33,t

)1/2

 (A9)
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where

Qt = (1−α−β)


q11 q12 q13

q21 q22 q23

q31 q32 q33

+α


u2

1,t−1 u1,t−1u2,t−1 u1,t−1u3,t−1

u2,t−1u1,t−1 u2
2,t−1 u2,t−1u3,t−1

u3,t−1u1,t−1 u3,t−1u2,t−1 u2
3,t−1



+ β


q11,t−1 q12,t−1 q13,t−1

q21,t−1 q22,t−1 q23,t−1

q31,t−1 q32,t−1 q33,t−1

 .

The variance equations in the DCC model, hii,t , i = 1, ...,3, are equal to the variance equations in the

CCC model, while the covariance equation for markets 1 and 2, for example, is given by

h12,t = q12,t

(
h11,th22,t

q11,tq22,t

)1/2

(A10)

where

q12,t = (1−α−β)q̄12 +αu2,t−1u1,t−1 +βq12,t−1,

q11,t = (1−α−β)q̄11 +αu2
1,t−1 +βq11,t−1,

q22,t = (1−α−β)q̄22 +αu2
2,t−1 +βq22,t−1,

u1,t−1 = ε1,t−1 (h11,t−1)
−1/2 ,

u2,t−1 = ε2,t−1 (h22,t−1)
−1/2 .
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Corn

Wheat

Soybeans

Figure 1. Daily Returns

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou;

TGE=Japan-Tokyo.
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Figure 2. Asynchronous Trading Hours

Note: This figure illustrates the problem of asynchronous trading hours in Chicago (CBOT), France (MATIF) and China (Dalian-DCE). The

figures shows the opening and closing (local) times in each market, the asynchronous observed returns (y), and the unobserved missing

fractions (ξ) with respect to the last market to close (CBOT).
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Corn

Wheat

Soybeans

Figure 3. Dynamic Conditional Correlations (DCC Model)

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou;

TGE=Japan-Tokyo.

29



Corn

Wheat

Soybeans

Figure 4. Impulse-Response Functions, Full T-Bekk Model

Note: The responses are the result of a 1%-innovation in the own conditional volatility of the market where the innovation first occurs. The

responses are normalized by the size of the original shock. CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United

Kingdom-London; ZCE=China-Zhengzhou; TGE=Japan-Tokyo.
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Table I
Data

Corn
Exchange Product, Symbol Starting Date Price Quotation Contract Unit

CBOT Corn No.2 yellow, C 01/03/1994 Cents/bushel 5,000 bushels
MATIF Corn, MC 05/09/2003 Euros/tonne 50 tonnes
DCE Corn, XV 09/22/2004 Yuan/MT 10 MT
TGE Corn No.3, CV 08/16/1994 Yen/MT 50 MT

Wheat
Exchange Product, Symbol Starting Date Price Quotation Contract Unit

CBOT Wheat No.2 soft, W 01/03/1994 Cents/bushel 5,000 bushels
LIFFE Wheat EC, FW 08/06/1991 Pounds/tonne 100 tonnes
ZCE Winter Wheat, WR 05/09/2005 Yuan/MT 10 MT

Soybeans
Exchange Product, Symbol Starting Date Price Quotation Contract Unit

CBOT Soybeans No.1 yellow, S 01/03/1994 Cents/bushel 5,000 bushels
DCE Soybeans No.1, XT 01/02/2004 Yuan/MT 10 MT
TGE Soybeans, GT 05/18/2000 Yen/MT 10 MT

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou;

TGE=Japan-Tokyo. Units of measure: 5,000 bushels of corn=127 MT (metric ton); 5,000 bushels of wheat (soybeans)=136 MT; 1000kg=1

MT; 1 tonne=1 MT.
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Table II
Summary Statistics for Daily Returns

Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE

Mean 0.042 0.041 0.031 0.035 0.011 0.020 0.039 0.008 -0.010
Median 0.000 0.050 0.004 0.000 -0.025 0.000 0.126 0.029 0.067
Maximum 9.801 8.498 8.627 8.794 6.026 14.518 6.445 5.244 10.267
Minimum -8.076 -8.607 -3.353 -9.973 -10.602 -4.609 -10.530 -9.455 -14.985
Std. Dev. 2.117 1.477 0.869 2.372 1.610 1.259 1.892 1.172 2.388
Skewness 0.129 -0.140 2.610 -0.087 -0.235 3.298 -0.422 -0.776 -0.475
Kurtosis 4.775 7.017 24.597 4.401 5.939 36.146 4.989 10.212 7.125
Jarque-Bera 148.5 748.4 22790.7 80.0 355.5 45829.7 239.3 2788.7 918.5
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
# observations 1108 1108 1108 963 963 963 1230 1230 1230

Returns correlations

Rho(lag=1) 0.009 0.072* 0.031 -0.021 0.027 -0.100 -0.016 0.097* 0.194*
Rho(lag=2) -0.003 -0.040 -0.068 -0.026 0.016 -0.019 -0.006 0.101* 0.088*
LB(6) 2.642 15.194* 14.154* 5.893 7.498 13.262* 9.173 52.793* 57.499*
LB(12) 7.510 21.593* 16.212 10.268 21.490* 18.595 15.248 54.895* 64.516*

Squared returns correlations

Rho(lag=1) 0.141* 0.100* 0.050 0.208* 0.134* 0.042 0.059* 0.184* 0.349*
Rho(lag=2) 0.070 0.102* 0.075* 0.159* 0.132* -0.004 0.104* 0.146* 0.235*
LB(6) 55.936* 66.598* 11.112 124.940* 78.749* 2.189 115.250* 130.970* 344.260*
LB(12) 85.268* 136.390 11.847 166.510* 121.160* 3.069 221.730* 148.400* 390.390*

Note: The symbol (*) denotes rejection of the null hypothesis at the 5% significance level. Rho is the autocorrelation coefficient. LB stands

for the Ljung-Box statistic. CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-

Zhengzhou; TGE=Japan-Tokyo.
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Table III
Correlations for Asynchronous, Synchronized and Weekly Returns

Corn

Asynchronous Weekly Synchronized

CBOT MATIF DCE CBOT MATIF DCE CBOT MATIF DCE

CBOT 1.000 0.359 0.168 1.000 0.421 0.212 1.000 0.444 0.255
MATIF 1.000 0.166 1.000 0.251 1.000 0.184
DCE 1.000 1.000 1.000

Wheat

Asynchronous Weekly Synchronized

CBOT LIFFE ZCE CBOT LIFFE ZCE CBOT LIFFE ZCE

CBOT 1.000 0.451 0.075 1.000 0.569 0.081 1.000 0.537 0.093
LIFFE 1.000 0.073 1.000 0.059 1.000 0.101
ZCE 1.000 1.000 1.000

Soybeans

Asynchronous Weekly Synchronized

CBOT DCE TGE CBOT DCE TGE CBOT DCE TGE

CBOT 1.000 0.228 0.127 1.000 0.500 0.455 1.000 0.565 0.384
DCE 1.000 0.258 1.000 0.349 1.000 0.248
TGE 1.000 1.000 1.000

Note: The correlations reported are the Pearson correlations. CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United

Kingdom-London; ZCE=China-Zhengzhou; TGE=Japan-Tokyo.

33



Table IV
Diagonal T-BEKK Model Estimation Results

Coefficient Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE
(i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3)

ci1 0.335 0.044 0.339 0.217 0.052 0.261 0.342 0.458 0.174
(0.050) (0.014) (0.060) (0.054) (0.022) (0.120) (0.048) (0.052) (0.033)

ci2 0.125 0.212 -0.115 -0.608 -0.085 -0.343
(0.024) (0.076) (0.032) (0.239) (0.066) (0.071)

ci3 0.000 0.000 0.000
(0.000) (0.026) (0.000)

ai1 0.192 0.159 0.188
(0.033) (0.020) (0.020)

ai2 0.206 0.233 0.397
(0.022) (0.022) (0.045)

ai3 0.633 0.513 0.203
(0.088) (0.085) (0.032)

bi1 0.976 0.987 0.966
(0.000) (0.000) (0.000)

bi2 0.980 0.977 0.828
(0.000) (0.000) (0.032)

bi3 0.636 -0.395 0.971
(0.065) (0.377) (0.010)

Test for standardized residuals (H0: no autocorrelation)

LB(6) 3.782 6.070 0.960 25.658 15.021 0.329 8.086 0.831 2.183
p-value 0.706 0.416 0.987 0.000 0.020 0.999 0.232 0.991 0.902

LB(12) 4.712 10.927 2.698 29.326 19.909 0.638 14.783 1.558 2.787
p-value 0.967 0.535 0.997 0.004 0.069 1.000 0.254 1.000 0.997

Log likelihood -5,183.2 -4,873.0 -6,723.6
# observations 1,105 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou;

TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic.
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Table V
Full T-BEKK Model Estimation Results

Coefficient Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE
(i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3)

ci1 0.377 -0.036 0.085 0.040 -0.119 -0.333 -0.001 0.115 0.140
(0.107) (0.163) (0.542) (0.245) (0.048) (1.029) (0.026) (0.421) (0.525)

ci2 -0.037 -0.070 0.036 0.360 0.430 0.079
(0.083) (0.860) (0.238) (0.640) (0.152) (0.104)

ci3 0.367 0.410 0.229
(0.269) (1.149) (0.305)

ai1 0.156 -0.018 0.041 0.135 0.043 0.055 0.129 0.198 0.073
(0.048) (0.028) (0.035) (0.048) (0.026) (0.042) (0.042) (0.084) (0.079)

ai2 0.091 0.204 -0.025 0.081 0.199 -0.125 -0.182 0.232 -0.194
(0.067) (0.030) (0.041) (0.183) (0.068) (0.068) (0.070) (0.121) (0.126)

ai3 0.098 0.065 0.638 -0.072 -0.066 0.526 0.026 -0.033 0.206
(0.071) (0.166) (0.092) (0.104) (0.108) (0.086) (0.021) (0.021) (0.048)

bi1 0.971 0.011 0.004 0.995 0.001 0.004 0.918 0.047 -0.055
(0.014) (0.009) (0.043) (0.008) (0.003) (0.031) (0.025) (0.025) (0.044)

bi2 -0.003 0.983 0.029 -0.017 0.976 0.037 0.186 0.759 0.088
(0.013) (0.012) (0.023) (0.041) (0.014) (0.033) (0.062) (0.066) (0.095)

bi3 0.009 -0.086 0.608 -0.058 -0.066 -0.398 0.005 0.003 0.979
(0.032) (0.111) (0.072) (0.254) (0.334) (0.402) (0.007) (0.009) (0.013)

Wald joint test for cross-correlation coefficients (H0: ai j = bi j = 0,∀i 6= j)

Chi-sq 31.600 63.060 40.479
p-value 0.002 0.000 0.000

Test for standardized residuals (H0: no autocorrelation)

LB(6) 3.944 6.993 0.738 18.210 12.542 0.322 6.566 0.118 2.127
p-value 0.684 0.321 0.994 0.006 0.051 0.999 0.363 1.000 0.908

LB(12) 4.713 12.102 2.392 24.531 16.045 0.617 9.898 0.768 2.806
p-value 0.967 0.438 0.999 0.017 0.189 1.000 0.625 1.000 0.997

Log likelihood -5,169.3 -4,857.0 -6,696.7
# observations 1,105 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou;

TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic.
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Table VI
CCC Model Estimation Results

Coefficient Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE
(i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3)

ωi 0.636 0.027 0.183 0.355 0.046 0.972 0.037 0.303 0.440
(0.580) (0.017) (0.051) (0.220) (0.031) (0.249) (0.019) (0.111) (0.774)

αi 0.126 0.127 0.620 0.100 0.146 0.265 0.056 0.166 0.087
(0.062) (0.051) (0.210) (0.028) (0.047) (0.109) (0.011) (0.048) (0.084)

βi 0.740 0.873 0.372 0.833 0.851 0.000 0.933 0.646 0.853
(0.175) (0.045) (0.082) (0.061) (0.047) (0.159) (0.013) (0.080) (0.187)

ρi1 1.000 0.392 0.261 1.000 0.496 0.078 1.000 0.558 0.412
(0.031) (0.044) (0.026) (0.032) (0.036) (0.030)

ρi2 1.000 0.175 1.000 0.097 1.000 0.274
(0.032) (0.036) (0.035)

ρi3 1.000 1.000 1.000

Test for standardized residuals (H0: no autocorrelation)

LB(6) 3.958 1.512 1.362 4.375 7.917 0.300 3.764 0.268 1.273
p-value 0.682 0.959 0.968 0.626 0.244 0.999 0.709 1.000 0.973

LB(12) 4.716 6.171 3.187 10.395 15.672 0.645 7.172 0.854 1.911
p-value 0.967 0.907 0.994 0.581 0.207 1.000 0.846 1.000 1.000

Log likelihood -5,464.2 -5,153.9 -6,911.6
# observations 1,105 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou;

TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic.
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Table VII
DCC Model Estimation Results

Coefficient Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE
(i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3)

ωi 0.636 0.027 0.183 0.355 0.046 0.972 0.037 0.303 0.440
(0.578) (0.017) (0.051) (0.216) (0.031) (0.246) (0.019) (0.106) (0.771)

αi 0.126 0.127 0.620 0.100 0.146 0.265 0.056 0.166 0.087
(0.062) (0.051) (0.210) (0.027) (0.047) (0.108) (0.010) (0.048) (0.083)

βi 0.740 0.873 0.372 0.833 0.851 0.000 0.933 0.646 0.853
(0.175) (0.045) (0.082) (0.060) (0.047) (0.095) (0.013) (0.079) (0.186)

α 0.006 0.010 0.000
(0.003) (0.009) (0.013)

β 0.989 0.982 0.000
(0.007) (0.021) (2.155)

Test for standardized residuals (H0: no autocorrelation)

LB(6) 3.555 1.892 1.464 4.488 6.485 0.294 3.748 0.268 1.273
p-value 0.737 0.929 0.962 0.611 0.371 1.000 0.711 1.000 0.973

LB(12) 4.270 6.244 3.287 9.542 13.893 0.652 7.170 0.856 1.912
p-value 0.978 0.903 0.993 0.656 0.308 1.000 0.846 1.000 1.000

Log likelihood -5,454.3 -5,144.3 -6,911.6
# observations 1,105 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou;

TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic.
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Table VIII
Full T-BEKK Model Estimation Results, Before the Food Crisis

Coefficient Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE
(i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3)

ci1 0.735 0.170 0.294 0.343 -0.052 -0.615 0.160 -0.194 0.932
(0.254) (0.094) (0.098) (0.283) (0.141) (0.200) (0.144) (0.473) (1.298)

ci2 -0.001 -0.003 0.119 0.066 0.303 0.667
(0.040) (0.014) (0.100) (1.063) (0.619) (1.362)

ci3 0.000 0.052 -0.001
(0.033) (1.342) (0.061)

ai1 -0.216 -0.036 -0.058 -0.044 -0.023 0.060 0.033 0.263 -0.124
(0.057) (0.053) (0.066) (0.092) (0.045) (0.042) (0.060) (0.182) (0.117)

ai2 -0.149 0.099 -0.079 0.063 0.245 0.003 0.028 -0.171 0.045
(0.152) (0.051) (0.040) (0.255) (0.092) (0.108) (0.231) (0.182) (0.282)

ai3 -0.101 0.089 0.546 -0.076 -0.114 0.575 0.090 0.005 0.468
(0.155) (0.099) (0.251) (0.200) (0.068) (0.114) (0.112) (0.055) (0.144)

bi1 0.864 -0.052 -0.057 -0.473 0.363 -0.032 0.922 0.020 -0.002
(0.030) (0.020) (0.020) (0.485) (0.230) (0.042) (0.089) (0.126) (0.179)

bi2 0.095 1.005 0.020 1.819 0.520 0.110 0.220 0.852 0.203
(0.071) (0.010) (0.017) (0.225) (0.509) (0.059) (0.170) (0.376) (0.280)

bi3 0.254 -0.061 0.792 0.522 -0.087 -0.032 -0.051 -0.002 0.729
(0.140) (0.066) (0.159) (0.307) (0.097) (0.190) (0.113) (0.052) (0.163)

Wald joint test for cross-correlation coefficients (H0: ai j = bi j = 0,∀i 6= j)

Chi-sq 70.535 278.888 133.794
p-value 0.000 0.000 0.000

Test for standardized residuals (H0: no autocorrelation)

LB(6) 1.540 5.987 1.667 3.735 5.051 0.794 2.242 0.353 1.229
p-value 0.957 0.425 0.948 0.712 0.537 0.992 0.896 0.999 0.976

LB(12) 1.810 8.182 2.612 9.019 11.013 2.432 5.671 1.285 2.483
p-value 1.000 0.771 0.998 0.701 0.528 0.998 0.932 1.000 0.998

Log likelihood -3,475.7 -1,184.4 -4,665.4
# observations 789 491 926

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou;

TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic. Before the crisis corresponds to

09/23/2004–02/26/2008 for corn, 05/10/2005–06/22/2007 for wheat, and 01/05/2004–02/26/2008 for soybeans.
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Table IX
Full T-BEKK Model Estimation Results, After the Food Crisis

Coefficient Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE
(i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3)

ci1 0.605 1.121 -0.278 1.325 0.758 0.057 0.960 0.371 -0.778
(0.406) (0.345) (0.080) (0.608) (0.510) (0.316) (0.412) (0.173) (0.500)

ci2 -0.085 0.003 0.030 -0.096 0.000 0.000
(0.347) (0.032) (0.346) (0.346) (0.000) (0.000)

ci3 0.000 0.000 0.000
(0.095) (0.742) (0.000)

ai1 0.225 0.305 -0.091 0.133 0.037 -0.057 -0.210 -0.011 -0.215
(0.144) (0.131) (0.052) (0.247) (0.187) (0.091) (0.134) (0.081) (0.177)

ai2 -0.098 -0.420 0.100 -0.348 -0.055 0.002 0.342 0.331 0.495
(0.169) (0.160) (0.054) (0.217) (0.122) (0.113) (0.151) (0.133) (0.169)

ai3 0.130 -0.131 0.748 0.226 -0.081 0.483 -0.147 -0.157 0.443
(0.212) (0.121) (0.156) (0.289) (0.295) (0.134) (0.081) (0.090) (0.135)

bi1 0.791 -0.146 -0.086 0.703 -0.165 -0.018 0.796 -0.099 0.450
(0.044) (0.050) (0.020) (0.251) (0.135) (0.127) (0.213) (0.092) (0.159)

bi2 0.180 0.924 0.166 0.093 1.038 -0.005 -0.229 0.846 -0.231
(0.098) (0.104) (0.030) (0.227) (0.124) (0.017) (0.113) (0.113) (0.234)

bi3 0.528 0.455 0.517 0.132 0.197 0.906 0.105 0.101 0.761
(0.240) (0.202) (0.107) (0.227) (0.179) (0.119) (0.085) (0.033) (0.092)

Wald joint test for cross-correlation coefficients (H0: ai j = bi j = 0,∀i 6= j)

Chi-sq 341.026 39.221 110.368
p-value 0.000 0.000 0.000

Test for standardized residuals (H0: no autocorrelation)

LB(6) 4.150 2.792 4.148 3.050 7.081 4.655 7.079 15.238 4.435
p-value 0.656 0.835 0.657 0.803 0.314 0.589 0.314 0.019 0.618

LB(12) 14.804 5.819 7.172 7.800 17.658 12.630 9.456 19.936 6.059
p-value 0.252 0.925 0.846 0.801 0.127 0.397 0.664 0.068 0.913

Log likelihood -1,254.9 -289.0 -73.9
# observations 232 147 198

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou;

TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic. After the crisis corresponds to

06/30/2008–06/30/2009 for corn, 11/05/2008–06/30/2009 for wheat, and 08/01/2008–06/30/2009 for soybeans.
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Appendix B. Results Excluding China

Corn

Wheat

Soybeans

Figure 5. Dynamic Conditional Correlations, Excluding China (DCC Model)

Note: CBOT=Chicago; MATIF=France-Paris; LIFFE=United Kingdom-London; TGE=Japan-Tokyo.
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Table X
Diagonal T-BEKK Model Estimation Results, Excluding China

Coefficient Corn Corn with TGE Wheat Soybeans

CBOT MATIF CBOT MATIF TGE CBOT LIFFE CBOT TGE
(i=1) (i=2) (i=1) (i=2) (i=3) (i=1) (i=2) (i=1) (i=2)

ci1 0.339 0.042 0.373 0.049 0.142 0.209 0.053 0.187 0.209
(0.089) (0.017) (0.081) (0.014) (0.026) (0.059) (0.024) (0.040) (0.239)

ci2 0.105 0.123 0.038 0.114 0.368
(0.024) (0.026) (0.026) (0.036) (0.196)

ci3 - - 0.079 - - - -
(0.126)

ai1 0.265 0.198 0.167 0.202
(0.044) (0.028) (0.020) (0.028)

ai2 0.216 0.215 0.234 0.255
(0.022) (0.028) (0.028) (0.112)

ai3 - - 0.124 - - - -
(0.026)

bi1 0.955 0.966 0.982 0.975
(0.014) (0.010) (0.000) (0.000)

bi2 0.974 0.973 0.970 0.954
(0.000) (0.000) (0.010) (0.047)

bi3 - - 0.989 - - - -
(0.000)

Test for standardized residuals (H0: no autocorrelation)

LB(6) 3.522 5.793 1.558 2.776 7.111 15.251 11.545 3.080 1.461
p-value 0.741 0.447 0.956 0.836 0.311 0.018 0.073 0.799 0.962

LB(12) 6.670 11.567 3.301 7.450 9.238 18.503 17.873 7.002 2.560
p-value 0.879 0.481 0.993 0.827 0.683 0.101 0.120 0.858 0.998

Log likelihood -4,097.1 -6,140.8 -3,691.6 -5,130.2
# observations 1,105 1,115 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; LIFFE=United Kingdom-London; TGE=Japan-Tokyo. The symbol (-) stands for not applica-

ble. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic.
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Table XI
Full T-BEKK Model Estimation Results, Excluding China

Coefficient Corn Corn with TGE Wheat Soybeans

CBOT MATIF CBOT MATIF TGE CBOT LIFFE CBOT TGE
(i=1) (i=2) (i=1) (i=2) (i=3) (i=1) (i=2) (i=1) (i=2)

ci1 0.448 -0.033 0.462 0.074 0.221 -0.056 1.249 0.206 0.275
(0.219) (0.118) (0.085) (0.060) (0.319) (0.045) (0.839) (0.052) (0.133)

ci2 -0.081 -0.001 0.002 -1.101 0.309
(0.094) (0.021) (0.013) (0.666) (0.144)

ci3 - - -0.049 - - - -
(0.099)

ai1 0.257 -0.039 0.108 -0.010 0.212 0.134 0.016 0.198 0.010
(0.091) (0.061) (0.064) (0.023) (0.045) (0.040) (0.038) (0.027) (0.035)

ai2 0.104 0.223 0.072 0.236 0.140 0.131 0.265 0.031 0.259
(0.046) (0.032) (0.105) (0.044) (0.074) (0.082) (0.071) (0.019) (0.066)

ai3 - - -0.019 0.014 -0.027 - - - -
(0.080) (0.030) (0.055)

bi1 0.936 0.014 0.725 0.000 -0.355 0.994 0.005 0.975 -0.007
(0.053) (0.026) (0.055) (0.040) (0.029) (0.004) (0.005) (0.009) (0.020)

bi2 0.004 0.969 -0.050 0.985 0.144 -0.037 0.953 -0.008 0.955
(0.019) (0.013) (0.049) (0.012) (0.048) (0.017) (0.019) (0.010) (0.027)

bi3 - - 0.385 -0.023 1.098 - - - -
(0.060) (0.037) (0.043)

Wald joint test for cross-correlation coefficients (H0: ai j = bi j = 0,∀I 6= j)

Chi-sq 7.465 966.741 20.265 2.489
p-value 0.113 0.000 0.000 0.647

Test for standardized residuals (H0: no autocorrelation)

LB(6) 3.671 7.750 2.268 3.644 11.458 10.682 10.982 2.995 1.477
p-value 0.721 0.257 0.894 0.725 0.075 0.099 0.089 0.809 0.961

LB(12) 6.211 14.642 3.888 9.716 12.818 15.316 16.751 6.706 2.621
p-value 0.905 0.262 0.985 0.641 0.382 0.225 0.159 0.876 0.998

Log likelihood -4,089.9 -6,124.6 -8,107.4 -5,129.3
# observations 1,105 1,115 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; LIFFE=United Kingdom-London; TGE=Japan-Tokyo. The symbol (-) stands for not applica-

ble. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic.
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Table XII
CCC Model Estimation Results, Excluding China

Coefficient Corn Corn with TGE Wheat Soybeans

CBOT MATIF CBOT MATIF TGE CBOT LIFFE CBOT TGE
(i=1) (i=2) (i=1) (i=2) (i=3) (i=1) (i=2) (i=1) (i=2)

ωi 0.655 0.027 0.554 0.024 0.987 0.342 0.046 0.037 0.412
(0.592) (0.017) (0.656) (0.015) (0.497) (0.214) (0.031) (0.019) (0.566)

αi 0.126 0.128 0.111 0.126 0.170 0.100 0.145 0.058 0.086
(0.061) (0.050) (0.078) (0.049) (0.059) (0.028) (0.048) (0.011) (0.065)

βi 0.736 0.872 0.770 0.874 0.590 0.836 0.851 0.932 0.857
(0.176) (0.045) (0.212) (0.044) (0.157) (0.060) (0.048) (0.013) (0.139)

ρi1 1.000 0.391 1.000 0.382 0.580 1.000 0.497 1.000 0.409
(0.031) (0.031) (0.029) (0.025) (0.030)

ρi2 1.000 1.000 0.362 1.000 1.000
(0.030)

ρi3 - - 1.000 - - - -

Test for standardized residuals (H0: no autocorrelation)

LB(6) 3.761 1.707 4.741 1.315 2.589 4.327 7.578 2.546 1.028
p-value 0.709 0.945 0.577 0.971 0.858 0.632 0.271 0.863 0.985

LB(12) 4.613 7.037 6.037 5.454 3.950 10.179 15.556 5.738 1.569
p-value 0.970 0.855 0.914 0.941 0.984 0.600 0.212 0.929 1.000

Log likelihood -4,193.8 -6,278.4 -3,735.1 -5,188.9
# observations 1,105 1,115 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; LIFFE=United Kingdom-London; TGE=Japan-Tokyo. The symbol (-) stands for not applica-

ble. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic.
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Table XIII
DCC Model Estimation Results, Excluding China

Coefficient Corn Corn with TGE Wheat Soybeans

CBOT MATIF CBOT MATIF TGE CBOT LIFFE CBOT TGE
(i=1) (i=2) (i=1) (i=2) (i=3) (i=1) (i=2) (i=1) (i=2)

ωi 0.655 0.027 0.554 0.024 0.987 0.342 0.046 0.037 0.412
(0.590) (0.017) (0.655) (0.015) (0.492) (0.213) (0.031) (0.019) (0.565)

αi 0.126 0.128 0.111 0.126 0.170 0.100 0.145 0.058 0.086
(0.061) (0.050) (0.078) (0.049) (0.059) (0.028) (0.047) (0.011) (0.065)

βi 0.736 0.872 0.770 0.874 0.590 0.836 0.851 0.932 0.857
(0.176) (0.045) (0.213) (0.044) (0.157) (0.060) (0.047) (0.013) (0.139)

α 0.041 0.011 0.010 0.000
(0.031) (0.014) (0.005) (0.054)

β 0.914 0.971 0.986 0.000
(0.091) (0.056) (0.007) (3.560)

Test for standardized residuals (H0: no autocorrelation)

LB(6) 3.126 2.250 4.327 1.266 2.582 4.324 6.582 2.537 1.028
p-value 0.793 0.895 0.632 0.973 0.859 0.633 0.361 0.864 0.985

LB(12) 3.952 7.678 5.704 5.365 3.906 8.961 14.449 5.738 1.569
p-value 0.984 0.810 0.930 0.945 0.985 0.706 0.273 0.929 1.000

Log likelihood -4,180.0 -6,270.5 -3,723.9 -5,188.9
# observations 1,105 1,115 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; LIFFE=United Kingdom-London; TGE=Japan-Tokyo. Standard errors reported in parenthe-

ses. LB stands for the Ljung-Box statistic.
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Table XIV
Estimated Break Dates

Corn Wheat Soybeans

Exchange Break Date Exchange Break Date Exchange Break Date

CBOT 06/27/2008 (last) CBOT 02/22/2008 CBOT 02/27/2008 (first)
MATIF 06/05/2008 LIFFE 06/25/2007 (first) DCE 07/31/2008 (last)
DCE 02/27/2008 (first) ZCE 11/04/2008 (last) TGE 07/16/2008

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou;

TGE=Japan-Tokyo. The estimated break dates are based on Lavielle and Moulines (2000) test for structural breaks.
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