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are called conditional Value-at-Risk (VaR) (see McNeil and Frey (2000); Martins-Filho and Yao
(2006b); Cai and Wang (2008)). It is interesting that the information that a is in the vicinity
of 1 is helpful in the estimation of q(a). Pickands (1975) showed that if F is in the domain
of attraction of an extremal type distribution, denoted by F (x) ∈ D(E), for some fixed k and
function σ(ξ)

(3) F (x) ∈ D(E) ⇐⇒ limξ→u∞sup0<u<u∞−ξ |Fξ(u)−G(u;σ(ξ), k)| = 0,

where Fξ(u) = F (u+ξ)−F (ξ)
1−F (ξ) , u∞ = l.u.b{x : F (x) < 1} ≤ ∞ is the upper endpoint of F ,

u∞ > ξ ∈ <, G is a generalized Pareto distribution (GPD), i.e.,

G(y;σ, k) =

{
1− (1− ky/σ)1/k if k 6= 0, σ > 0

1− exp(−y/σ) if k = 0, σ > 0

with 0 < y < ∞ if k < 0 and 0 < y < σ/k if k > 0.2 It is evident that Fξ(u) represents the
conditional distribution of the exceedances over ξ of an random variable U given that U > ξ.

The equivalence in (3) shows that G is a suitable parametric approximation for the upper
tail of F provided that F belongs to the domain of attraction of an extremal type distribution.
Intuitively, an estimator for q(a) can be obtained from the estimation of the parameters k and
σ(ξ). Smith (1987) provides a comprehensive study of a maximum likelihood (ML) type estimator
for k and σ(ξ) when the sequence {Ui}ni=1 is observed. In this paper we extend Smith’s results
and study the asymptotic properties of ML type estimators for k and σ(ξ) based on a sequence
{Ûi}ni=1 obtained from a first stage nonparametric estimator m̂(x) for m(x). The extension is
desirable as many stochastic models of interest, in particular those used in insurance and finance,
exhibit the conditional location-scale structure of equation (1) (see Embrechts, Kluppelberg and
Mikosh (1997)) rather than the simpler formulation treated by Smith.

We have shown that, for the case where F (x) belongs to the domain of attraction of a Fréchet
distribution, the ML estimator for the parameters of the GPD based on the sequence {Ûi}ni=1

converge at a parametric rate to a normal distribution when suitably centered. The asymptotic
distribution is similar to that obtained by Smith (1987), but although the use of nonparametric
residuals does not impact the estimator’s rate of convergence, it does increases its variance. We
also study the asymptotic behavior of the estimator q̂(a) constructed from the ML estimators
for the parameters of the GPD. In particular, we show that q̂(a)

q(a)−1 also converges in distribution
to a normal at the parametric rate. These results, combined with known properties for suitably
defined m̂(x) provide consistency of q̂Y |X(a) as an estimator for qY |X(a).

Besides the introduction, this paper has four more sections and two appendices. Section 2
provides definitions and discussions of the specific estimators we will consider. Section 3 provides
the asymptotic characterization of our proposed estimators and the assumptions we used in our
results. Section 4 contains a Monte Carlo study that sheds some light on the finite sample
properties of the estimator under study and a comparison with a commonly used estimator
proposed by Hill (1975) for the parameter k of the GPD distribution. Section 5 provides a
conclusion and gives directions for further study. The appendices contain all proofs, supporting
lemmas, tables and figures that summarize the Monte Carlo simulations.

2. Estimation. The estimation procedure has two main stages. First, the definition of Ûi in
(2) requires a specific estimator for m(x). For algebraic simplicity we will consider the Nadaraya-
Watson (NW) estimator

m̂(x) =

n∑
i=1
K1

(
Xi−x
h1n

)
Yi

n∑
i=1
K1

(
Xi−x
h1n

)
2l.u.b stands for least upper bound.



HIGH ORDER QUANTILE ESTIMATION 3

based on a random sample {(Yi, Xi)}ni=1 of observations on (Y,X) ∈ <2. Here, K1(·) is a kernel
function satisfying some standard properties (see section 3) and 0 < h1n is a bandwidth.3 It
should be clear from what follows that other nonparametric estimators for m(x) could be used
to define Ûi. What is important is that they are uniformly asymptotically close to m(x) in
probability at a suitable rate. In particular, for the the NW estimator we have that under our
assumptions

(4) sup
x∈G
|m̂(x)−m(x)| = Op

((
nh1n

log n

)−1/2

+ h2
1n

)

where G is any compact subset of <.
Given a sequence {Ui}ni=1 we define the (ascending) order statistics {U(i)}ni=1. For any N < n

we define the excesses over U(n−N) by {Zj}Nj=1 = {U(n−N+j) − U(n−N)}Nj=1. In our context, it
should be clear that since Ui is not observed, neither is Zj . Order statistics can be viewed as
estimators for a-quantiles associated with empirical distributions. As such, we can write

qn(a) =

{
U(na) if na ∈ N

U([na]+1) if na /∈ N

where N represents the positive integers, qn(a) is the a-quantile associated with the empirical
distribution Fn(u) = n−1∑n

i=1 χ{Ui≤u} with χA denoting the indicator function for the set A.

Consequently, for an = 1 − N
n we can write {Zj}Nj=1 =

{
U(n−N+j) − qn (an)

}N
j=1

. It is well

known from the unconditional distribution and quantile estimation literature (Azzalini (1981),
Falk (1985), Yang (1985), Bowman, Hall and Prvan (1998), Martins-Filho and Yao (2007)) that
smoothing beyond that attained by the empirical distribution can produce significant gains in
finite samples with no impact on asymptotic rates of convergence. Consequently, to construct
an estimated sequence of excesses {Z̃j}Nj=1, we define q̃(z) as the solution for

F̃ (q̃(z)) = z

where F̃ (u) =
∫ u
−∞

1
nh2n

n∑
i=1
K2

(
Ûi−y
h2n

)
dy, K2(·) is a kernel function and 0 < h2n is a band-

width satisfying certain regularity conditions. Therefore, we can define the observed sequence

{Z̃j}Nj=1 =
{
Û(n−N+j) − q̃(an)

}N
j=1

to be used in the estimation of the parameters of the GPD

in the second stage.
In the second stage of the estimation we first consider maximum likelihood estimators for σ

and k based on the density g(z;σ, k) = 1
σ

(
1− kz

σ

)1/k−1
associated with the GPD distribution.

In particular, we consider a solution (σ̃N , k̃) for the following likelihood equations:

(5)
∂

∂σ

1
N

N∑
i=1

log g(Z̃j ; σ̃N , k̃) = 0 and
∂

∂k

1
N

N∑
i=1

log g(Z̃j ; σ̃N , k̃) = 0.

If {Ui}ni=1 were observed, for a threshold ξ = U(n−N) we could, based on (3), write

FU(n−N)
(y) =

F (y + U(n−N))− F (U(n−N))
1− F (U(n−N))

≈ 1−
(

1− ky

σN

)1/k

3The case where (Y,X) ∈ <1+D with X ∈ <D and D > 1 can be analyzed with arguments that are similar to
those we have used. The only differences reside on how the kernel function is defined and the speed of convergence
of the relevant bandwidths to zero.
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where σ has a subscript N to make explicit the fact that it depends on the threshold U(n−N).
Without loss of generality we can write for a ∈ (0, 1) that q(a) = U(n−N) + yN,a where by
construction F (U(n−N) + yN,a) = a. Hence, if 1− F (U(n−N)) is estimated by N/n, we have

(6)
1− a
N/n

≈
(

1− ky

σN

)1/k

,

which suggests yN,a ≈ σN
k

(
1−

(
(1−a)n
N

)k)
. The approximation in (6) is the basis for our pro-

posed estimator q̂(a) for q(a), which is given by

(7) q̂(a) = q̃(an) + ŷN,a = q̃(an) +
σ̃N

k̃

1−
(

(1− a)n
N

)k̃ .
Lastly, an estimator for qY |X=x(a) is given by q̂Y |X=x(a) = m̂(x) + q̂(a). In the next section we
provide asymptotic properties for (σ̃N , k̃), q̂(a) and q̂Y |X=x(a).

3. Asymptotic properties of the proposed estimators.

3.1. Preliminaries. We start by discussing some results in Smith (1987) as they are helpful in
understanding our contribution and provide the basis for understanding our strategy for proving
the main theorems. As mentioned above, contrary to our setting where the variables Y and X
are related through a regression model, in Smith (1987) the estimation of q(a) is conducted
under the assumption that the sequence {Zj}Ni=1 is observed. As such, he proposes estimators
(σ̂N , k̂) that satisfy the first order conditions

(8)
∂

∂σ

1
N

N∑
j=1

log g(Zj ; σ̂N , k̂) = 0 and
∂

∂k

1
N

N∑
j=1

log g(Zj ; σ̂N , k̂) = 0

associated with the likelihood function LN (σ, k) = 1
N

∑N
j=1 log g(Zj ;σ, k). Following Smith

(1985) it will be convenient to reparametrize the likelihood function and represent arbitrary
values σ and k as σ = σN (1 + tδN ), k = k0 + τδN for t, τ ∈ <, δN → 0 as N → ∞
and some σN and k0. Hence, we can rewrite the likelihood function LN (σ, k) as LTN (t, τ) =
1
N

∑N
j=1 log g(Zj ;σN (1 + tδN ), k0 + τδN ). It is evident that: a) LTN (0, 0) = LN (σN , k0); b)

choosing (σ̂N , k̂) such that equation (8) is satisfied is equivalent to choosing t∗ and τ∗ that
satisfy

1
σNδN

∂LTN
∂t

(t∗, τ∗) = 0 and
1
δN

∂LTN
∂τ

(t∗, τ∗) = 0.

Using Taylor’s Theorem, for λ1, λ2 ∈ [0, 1], these first order conditions can be expanded around
(0, 0) and can be written as

1
δ2
N

∂

∂t
LTN (t, τ) =

1
N

N∑
i=1

∂

∂σ
log g(Zi;σN , k0)

σN
δN

+
1
N

N∑
i=1

∂2

∂σ2
log g(Zi;σN (1 + δN tλ1), k0 + δNτλ2)σ2

N t

+
1
N

N∑
i=1

∂2

∂σ∂k
log g(Zi;σN (1 + δN tλ1), k0 + δNτλ2)σNτ = I1N + I2N + I3N



HIGH ORDER QUANTILE ESTIMATION 5

and

1
δ2
N

∂

∂τ
LTN (t, τ) =

1
N

N∑
i=1

∂

∂k
log g(Zi;σN , k0)

1
δN

+
1
N

N∑
i=1

∂2

∂k∂σ
log g(Zi;σN (1 + δN tλ1), k0 + δNτλ2)σN t

+
1
N

N∑
i=1

∂2

∂k2
log g(Zi;σN (1 + δN tλ1), k0 + δNτλ2)τ = I4N + I5N + I6N ,

where the terms IlN for l = 1, · · · , 6 denote the corresponding average in the preceding equality.
Smith (1987) showed that if the class to which F belongs is restricted to satisfy,

FR1: F ∈ D(Φα), that is, F belongs to the domain of attraction of a Fréchet distribution with
index α,

FR2: L(x) = xα(1 − F (x)) satisfies L(tx)
L(x) = 1 + k(t)φ(x) + o(φ(x)) as x → ∞ for each t > 0,

where 0 < φ(x) → 0 as x → ∞ is regularly varying with index ρ ≤ 0 and k(t) = C
∫ t

1 u
ρ−1du,

for a constant C,

and its associated density f(·) is strictly positive, then for σN = U(n−N)/α, 0 < α = −1/k0 and
k0 < 1/2 we have:

E

(
σN

∂

∂σ
log g(Z;σN , k0)

)
=
Cφ(U(n−N))
(1 + α− ρ)

+ o(φ(U(n−N)))

E

(
∂

∂k
log g(Z;σN , k0)

)
= −

αCφ(U(n−N))
(α− ρ)(1 + α− ρ)

+ o(φ(U(n−N)))

E

(
σ2
N

∂2

∂σ2
log g(Z;σN , k0)

)
= − α

2 + α
+O(φ(U(n−N)))

E

(
∂2

∂k2
log g(Z;σN , k0)

)
= − 2α2

(1 + α)(2 + α)
+O(φ(U(n−N))) and

E

(
σN

∂2

∂σ∂k
log g(Z;σN , k0)

)
=

α2

(1 + α)(2 + α)
+O(φ(U(n−N))),

where all expectations are taken with respect to the unknown distribution FU(n−N)
.

We note that condition FR1 is equivalent to 1−F (x) being regularly varying at∞ with index
−α. In addition, by Karamata’s Theorem 1 − F (x) = c(x)exp

(
−
∫ x

1 t
−1α(t)dt

)
for x ≥ 1 and

for measurable c(x), α(x) : (1,∞) → < such that limx→∞c(x) = c > 0, limx→∞α(x) = α > 0
for some c, α > 0 (Resnick (1987)). In fact, given the density f and if in Karamata’s Theorem
c(x) is a constant when x is sufficiently large, then limx→∞

xf(x)
1−F (x) = α, a result we (and Smith)

use repeatedly. Restricting F to D(Φα) is not entirely arbitrary. If F ∈ D(Ψα), the domain of
attraction of a (reverse) Weibull distribution, then it must be that u∞ is finite, a restriction
which is not commonly placed on the regression error U . The only other possibility is F in the
domain of attraction of a Gumbel distribution, F ∈ D(Λ). In this case, whenever u∞ is not
finite we have that 1− F is rapidly varying, a case we will avoid.

In addition to the expectations listed above, Smith showed that I1N = Op(N−1/2δ−1
N ), I4N =

Op(N−1/2δ−1
N ) and providedN1/2δN →∞ andN1/2φ(U(n−N)) = O(1) we have I1N , I4N = op(1).

Furthermore, I2N = − α
1+α + op(1), I3N = α2

(1+α)(2+α) + op(1), I5N = α2

(1+α)(2+α) + op(1), I6N =

− 2α2

(1+α)(2+α) + op(1) uniformly on ST = {(t, τ) : t2 + τ2 < 1}. Consequently, 1
δ2N

∂
∂tLTN (t, τ)

p→
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t
(
− α

1+α

)
+ τ

(
α2

(1+α)(2+α)

)
, 1
δ2N

∂
∂τLTN (t, τ)

p→ t
(

α2

(1+α)(2+α)

)
+ τ

(
− 2α2

(1+α)(2+α)

)
, which combined

with the fact that H = −

 − α
1+α

α2

(1+α)(2+α)
α2

(1+α)(2+α) − 2α2

(1+α)(2+α)

 is assumed to be positive definite gives

(9)
(
t τ

) 1
δ2N

∂
∂tLTN (t, τ)

1
δ2N

∂
∂τLTN (t, τ)

 p→
(
t τ

)
(−H)

(
t
τ

)
≤ 0 on ST .

Using Lemma 5 in Smith (1985) we can then conclude that 1
δ2N
LTN (t, τ) has, with probability ap-

proaching 1, a local maximum (t∗, τ∗) on ST = {(t, τ) : t2+τ2 < 1} at which 1
δ2N

∂
∂tLTN (t∗, τ∗) = 0

and 1
δ2N

∂
∂τLTN (t∗, τ∗) = 0. Put differently, there exists, with probability approaching 1, a local

maximum (σ̂N = σN (1 + t∗δN ), k̂ = k0 + τ∗δN ) on SR = {(σ, k) : ‖( σ
σN
− 1, k− k0)‖ < δN} that

satisfy the first order conditions in equation (8). Our first lemma establishes a similar result
for the estimator (σ̃N , k̃) that satisfies the first order condition given in equation (5).4 However,
given that we must deal with estimated sequences Z̃j , additional assumptions are needed.

3.2. Assumptions. As in Smith (1987) we retain FR1, FR2 and the assumption that {Ui}ni=1

forms an independent and identically distributed sequence of random variables with absolutely
continuous and strictly increasing distribution F ∈ D(Φα), with α = −1/k0 and k0 < 1/2. Given
equation (1) and the nonparametric estimation of m and q additional assumptions are needed.
Assumption A1: The kernel functions Ki(x) for i = 1, 2 are symmetric, twice continuously
differentiable functions Ki(x) : Si → <, where Si are bounded sets. They satisfy

∫
Si
Ki(s)ds = 1

and
∫
Si
sKi(s)ds = 0.

∫
S1
s2K1(s)ds = σ2

K1
< ∞ and

∫
sjK2(s)ds = 0 for j = 1, · · · ,m where

m > 2. We denote the jth order derivative of Ki by K
(j)
i and assume that |Ki(u) − Ki(v)| ≤

C|u− v| and |K(1)
i (u)−K(1)

i (v)| ≤ C|u− v| for some constant C > 0.
The higher order m for K2 is necessary in the proof of Lemma 2. All other assumption

are common in the nonparametric estimation literature and are easily satisfied by a variety of
commonly used kernels.
Assumption A2: The bandwidths 0 < hin → 0 as n→∞ for i = 1, 2. In addition, we assume
that h1n ∝ n−1/5, h2n ∝ n−1/5+δ for δ > 0 and n√

N
hm+1

2n → 0 as n→∞.
The last condition puts a restriction on the relative speed of N and h2n as n→∞. Given the

orders of h1n and h2n it suffices to choose N ∝ n4/5−δ. In this case, all orders in A2 are satisfied
and, as needed in Smith (1987), N1/2δN →∞ and N1/2φ(U(n−N)) = O(1).
Assumption A3: F (u) is absolutely continuous with density 0 < f(u) for all u < u∞ =
l.u.b{u : F (u) < 1}. f is m-times continuously differentiable with derivative function satisfying
|f (j)(u)| < C for some constant C and j = 1, · · · ,m.

The differentiability restrictions on f are necessary in the proof of Lemma 2.
Assumption A4: {(Xi, Ui)}i=1,··· ,n is a sequence of independent and identically distributed
random vectors with density equal to that of the vector (X,U) and given by fXU (x, u). We
denote the marginal density of X by fX(x) and the conditional density of U given X by fU |X(u).

We assume that E(U |X) = 0 and V (U |X) = 1 and that fU|X(u)

f(u) → 1 as u→∞.

The requirement that fU|X(u)

f(u) → 1 implies that U and X are asymptotically independent.
Assumption A5: m(x) is twice continuously differentiable at all x ∈ G and fX(x) is continu-
ously differentiable at all x ∈ G, G compact.

Assumption A5 is sufficient for equation (4) to hold but can be relaxed at some cost. It is,
however, standard in the nonparametric literature (Li and Racine (2007), Fan and Yao (2003)).

4‖x‖ denotes the Euclidean norm of the vector x.
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3.3. Existence of σ̃N and k̃. We now establish the existence of σ̃N and k̃. The strategy of
the proof is to show that the first order conditions associated with the likelihood function

L̃TN (t, τ) =
1
N

N∑
j=1

log g(Z̃j ;σN (1 + tδN ), k0 + τδN )

are asymptotically uniformly equivalent in probability to those associated with LTN on the set
ST . Formally, we have

Lemma 1 Let t, τ ∈ <, 0 < δN → 0, δNN1/2 → ∞ as N → ∞ and denote arbitrary σ and k
by σ = σN (1 + tδN ) and k = k0 + τδN . We define the log-likelihood function

L̃TN (t, τ) =
1
N

N∑
j=1

log g(Z̃j ;σN (1 + tδN ), k0 + τδN ),

where Z̃j = Û(n−N+j) − q̃(an), an = 1 − N
n , q̃(·) and Û(n−N+j) are as defined in section 2.

Given conditions FR1, FR2 and assumptions A1-A5. Then, as n → ∞ 1
δ2N
L̃TN (t, τ) has, with

probability approaching 1, a local maximum (t∗, τ∗) on ST = {(t, τ) : t2 + τ2 < 1} at which
1
δ2N

∂
∂t L̃TN (t∗, τ∗) = 0 and 1

δ2N

∂
∂τ L̃TN (t∗, τ∗) = 0.

The vector (t∗, τ∗) implies a value σ̃N and k̃ which are solutions for the likelihood equations

∂

∂σ

1
N

N∑
j=1

log g(Z̃j ; σ̃N , k̃) = 0 and
∂

∂k

1
N

N∑
j=1

log g(Z̃j ; σ̃N , k̃) = 0.

Hence, there exists, with probability approaching 1, a local maximum (σ̃N = σN (1 + t∗δN ), k̃ =
k0 + τ∗δN ) on SR = {(σ, k) : ‖( σ

σN
− 1, k − k0)‖ < δN} that satisfy the first order conditions in

equation (5).
The proof depends critically on two auxiliary results. First, there is a need for m̂ to be

uniformly asymptotically close to m at a certain order. Specifically, we need for a compact set
G that qn(an)−1supx∈G|m̂(x) − m(x)| = op(N−1/2). This assures that the residuals Ûi are in
some sense close to the unobserved Ui. Second, in Lemma 2 (see appendix) q̃(an) is shown to
be asymptotically close to qn(an) by satisfying q̃(an)−qn(an)

qn(an) = Op(N−1/2).
It is important to emphasize that Lemma 1 (as Theorem 3.2 in Smith (1987)) does not

provide a “consistency” result for the ML estimator. In fact, since the distribution FU(n−N)
is

only approximately a GPD, there are no true values for the parameters of the GPD to which σ̃
and k̃ are approaching in probability. What the Lemma does state is that the solutions for the
first order conditions listed in (5) correspond to a local maximum of the likelihood associated
with the GPD in a shrinking neighborhood of the arbitrary point (σN , k0).

3.4. Asymptotic normality of γ̃′ = (σ̃N , k̃). Smith (1987) showed that given conditions FR1,
FR2 and provided {Zj}Nj=1 is an independent and identically distributed sequence from FU(n−N)

,
N → ∞ and C

α−ρN
1/2φ(U(n−N)) → µ ∈ <, the local maximum (σ̂N , k̂) of the GPD likelihood

function, is such that for k0 = − 1
α and σN = qn(an)

α

√
N

(
σ̂N
σN
− 1

k̂ − k0

)
d→ N

 µ(1−k0)(1+2kρ)
1−k0+k0ρ

µ(1−k0)k0(1+ρ)
1−k0+k0ρ

 , H−1


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where H = 1
(1−2k0)(1−k0)

(
1− k0 −1
−1 2

)
.5 Our first theorem provides a similar asymptotic re-

sult for the estimators (σ̃N , k̃).

Theorem 1 Suppose FR1, FR2, A1-A5 hold and that C
α−ρN

1/2φ(U(n−N))→ µ ∈ <. The local

maximum (σ̃N , k̃) of the GPD likelihood function, is such that for k0 = − 1
α and σN = qn(an)

α

√
N

(
σ̃N
σN
− 1

k̃ − k0

)
d→ N

 µ(1−k0)(1+2k0ρ)
1−k0+k0ρ

µ(1−k0)k(1+ρ)
1−k0+k0ρ

 , H−1V2H
−1



where V2 =

 k2
0−4k0+2
(2k0−1)2

−1
k0(k0−1)

−1
k0(k0−1)

2k3
0−2k2

0+2k0−1

2k3
0−2k2

0+2k0−1

.

We note that the use of Z̃j instead of Zj in the estimation impacts the variance of the
asymptotic distribution. It is easy to verify that H−1V2H

−1−H−1 is positive definite, implying
an (expected) loss of efficiency that results from estimating Ui nonparametrically. However,
any additional bias introduced by the nonparametric estimation is of second order effect as the
asymptotic bias derived in Smith (1987) is precisely the same as the one we obtain in Theorem
1. An important note on the proof is that the fact that Z̃j is not iid as Zj does not require the
use of a CLT for dependent processes as justified in Lemma 3 in the appendix.

3.5. Asymptotic normality of q̂(a). The asymptotic distribution of the ML estimators given
in Theorem 1 is the basis for obtaining a normality result for q̂(a) given in equation (7). The
basic idea is to define, without loss of generality, q(a) = q(an) + yN,a for an = 1−N/n < a and
estimate q(an) by q̃(an) and yN,a based on the estimated parameters of the GPD. It is important
to note that, in Theorem 2, as n→∞ both an and a approach 1.

Theorem 2 Suppose FR1, FR2 and assumptions A1-A5 hold. In addition, assume that,
(i) N1/2Cφ(q(an))/(α− ρ)→ µ with k0 = − 1

α and σN = q(an)/α and
(ii) n(1− a) ∝ N . Then, for some za > 0

√
n(1− a)

(
q̂(a)
q(a)

− 1
)

d→ N

(
(−k0)

(
−k(za)µ(α− ρ)

C
− c′bH−1

(
bσ
bk

))
,

k2
0

(
c′bH

−1V2H
−1cb + 2c′b

(
2− k0

1− k0

)
+ 1

))
.

where c′b =
(
k−1

0 (z−1
a − 1) k−2

0 log(za) + k−2
0 (z−1

a − 1)
)

, bσ = E
(
∂
∂σ log g(Zj ;σN , k0)σN

)
and

bk = E
(
∂
∂k log g(Zj ;σN , k0)

)
.

Under the assumptions of Theorems 1 and 2 it is a direct consequence of the linear properties
of limits that for all a ∈ (0, 1), q̂Y |X=x(a) = m̂(x) + q̂(a)

p→ m(x) + q(a) = qY |X=x(a).

4. Simulations. We conduct a simulation study to implement our parameter estimators
γ̃′ = (σ̃N , k̃) and quantile estimator q̂, and compare them with some alternatives available in
the literature. We generate data independently from

Yi = m(Xi) + Ui, i = 1, · · · , n
5Substituting k0 = −α−1 shows that H is identical to the homonymous matrix in equation (9).
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where Xi is distributed as a standard normal. We consider two nonlinear functions for m(·),
m1(x) = 3sin(3x) and m2(x) = x2. Ui is generated independently from a distribution with
density f that is in the domain of attraction of the Fréchet distribution Φα with index α = −1/k0.

The first distribution we considered is the log-gamma distribution, whose density is given by

f(u) = (log(u))α−1 u
− 1
β
−1

βαΓ(α)
, for u > 1, α, β > 0.

It is easy to see that Ui is log-gamma distributed for Ui > 1 if and only if log(Ui) > 0 is
gamma distributed with parameters α, β > 0. Furthermore, one can show that E(Ui) = ( 1

1−β )α,
V (Ui) = ( 1

1−2β )α − ( 1
1−β )2α, and k0 = − 1

β . The Log-gamma distribution includes the Pareto
distribution as a special case when α = 1. We specifically let (α, β) = (1, 0.25), and (1, 0.5),
which correspond to k0 = −4 and −2 respectively. Both the mean and variance of Ui exist for
(α, β) = (1, 0.25), but the variance does not exist for (α, β) = (1, 0.5). Ui is demeaned since we
use it as an error term in the regression model.

The second distribution we considered is the student-t distribution with v degrees of freedom.
It can be shown that k0 = − 1

v , which is k0 = −1/3 for v = 3, and −1/2 for v = 2 respectively.
Here, when v = 2, the variance of Ui does not exist. Thus, the distributions we consider allow
k0 to take values in a wide range. We expect that the estimation will be relatively more difficult
when the variance does not exist.

Implementation of our estimator requires the choice of bandwidths h1n and h2n. We select
them using rule-of-thumb bandwidths ĥ1n = 1.25S(X)n−

1
5 and ĥ2n = 0.79R(X)n−

1
5 , with a

robust estimation for the variability of data as in (2.52) of Pagan and Ullah (1999), where S(X)
and R(X) are the standard deviation and the sample interquartile range of X, respectively.
We choose the second order Epanechnikov kernel for both the estimation of m(x) and the
smoothed sample quantile. The choice of bandwidths satisfies the restrictions imposed to obtain
the asymptotic properties in Theorems 1 and 2. Our assumptions also call for the use of a higher
order kernel in estimating the smoothed sample quantile. Here we investigate the robustness of
our estimator with the popular second order Epanechnikov kernel for its simplicity.

In estimating the parameters, we include our estimator γ̃, Smith’s estimator γ̂ = (σ̂N , k̂),
which utilizes the true Ui available in the simulation, and k̂h for k0, the estimator proposed by
Hill (1975). Hill’s estimator is designed for data from a heavy-tailed distribution with k0 < 0 and
has been studied extensively in the literature (Embrechts, Kluppelberg and Mikosh (1997)). It is
generally the most efficient estimator of k0 for sensible choices of N , though it is generally not the
most efficient nor the most stable quantile estimator (McNeil and Frey (2000)). Since Ui is un-

known in practice, we use Ûi = Yi−m̂(xi) to construct k̂h = − 1
N

N∑
j=1

(ln(Û(n−N+j))−ln(Û(n−N))).

The theoretical properties of k̂h are unknown and here we investigate its finite sample perfor-
mance relative to the estimator we propose. In estimating the a-quantile, we include our estima-
tor q̂, Smith’s estimator qs, Hill type estimator qh and empirical quantile estimator qe. Following
(6.30) in Embrechts, Kluppelberg and Mikosh (1997), we construct qh = Û(n−N)( 1−a

N/n)k̂
h
. qe is

simply the empirical quantile estimator based on {Ûi}ni=1. To give the reader a vivid picture of
them in practice, we provide in Figure 1 a plot of different quantile estimates against different
values of a, where qs is omitted for ease of illustration. a ranges from 0.95 to 0.995 because we are
interested in higher order quantiles. The data are generated with m(x) = 3sin(3x), Ui is from
the student-t distribution with v = 2 degree of freedom, and we select n = 1000 and N = 100.
Both q̂ and qh are smooth functions of a, while qe is not. All three estimators seem to capture
the low order quantile well, though differences start to be more noticeable for a approaching
one.

We fix the pairs n = 500 with N = 50, and n = 1000 with N = 100 in our simulation. We
follow this simple choice, because the effective sample size N in the second stage estimation
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is doubled. We did not explicitly consider the choice of N = O(n−4/5) as in our asymptotic
analysis, since our proposed estimator seems to be relatively robust to the choice of N . On the
other hand, the choice of N is critical for qh, as its performance deteriorates quickly with N , as
seen in Figures 2 and 3 and in the discussion below. Each experiment is repeated 5000 times.
We summarize the performance of parameter estimators in terms of their mean (M), bias (B)
(in the parameter k0 only), and standard deviation (S) in Table 1 for both m(x) = 3sin(3x)
and m(x) = x2 with log-gamma distributed U with α = 1 and β = 0.25, in Table 2 with α = 1
and β = 0.5, in Tables 3 and 4 with student-t distributed U with v = 3 and v = 2 respectively.
We provide the performance of 0.95, 0.99 and 0.995 quantile estimators in terms of the bias (B),
standard deviation (S) and root mean squared error (R) in Tables 5-12. Specifically, results for
log-gamma distributed U with (α, β) = (1, 0.25) and m(x) = 3sin(3x) are detailed in Table 5,
for m(x) = x2 in Table 6, for log-gamma distributed U using (α, β) = (1, 0.5) in Tables 7 and
8, for student-t distributed U using v = 3 in Tables 9 and 10, for student-t distributed U using
v = 2 in Tables 11 and 12.

In the case of estimating the parameters, we notice that γ̂ and γ̃ tend to overestimate k0.
k̂h carries a positive bias for the log-gamma distributed U , and a negative bias for the student-
t distributed U . As N increases, all estimators’ performance improve, in the sense that their
standard deviation decreases and the bias of estimators of k0 is also reduced. This seems to
confirm the asymptotic results in the previous section. As we move from Table 1 to 2 and from
Table 3 to 4, we find that the standard deviation of all estimators increase, and the bias of k0

parameter estimators decreases. We think this is related to the bias and variance trade-off for
the parameter estimation. As we have mentioned above, the variance of U does not exist for
log-gamma distributions with β = 0.5 in Table 2 and for student-t distribution with v = 2 in
Table 4. The distribution of U start to exhibit heavier tail behavior, thus more representative
extreme observations have a higher probability to show up in a sample, which explains lower
bias. Among three estimators for k0, k̂h in general has the best performance in terms of low
bias and standard deviation, with exceptions in bias for the student-t distributed U . The two
estimators γ̂ and γ̃ estimate both σN and k0 with very similar performances. Relative to γ̂, γ̃
exhibits lower bias in estimating k0, but slightly larger standard deviation in estimating both
parameters. It seems to suggest our proposed estimator γ̃ is well supported by the NW estimator
for the function m(x).

In the case of estimating the quantile, we notice qh carries a negative bias for estimating the
95% quantile, but positive bias for the 99% and 99.5% quantiles. qe always underestimates the
larger order quantiles. As N increases, all estimators’ performances improve in terms of smaller
bias, standard deviation and root mean squared error. The exception is qh, whose bias increases
with N . The distribution of U exhibits a heavier tail with β = 0.5 (Tables 7 and 8) relative
to β = 0.25 (Tables 5 and 6) in the log-gamma distribution, with v = 2 (Tables 11 and 12)
relative to v = 3 (Tables 9 and 10) in the student-t distribution. As we have mentioned above,
the random variable U does not have a variance in these cases. We find it more difficult for all
to estimate the quantiles across all experiment designs, with some exceptions in the bias. As
expected, when we estimate higher order a-quantile, all estimators’ performances deteriorate,
with some exceptions in bias. When we estimate the 95% quantile, which is relatively close
to the center of the distribution, there is no absolute dominance by any one of the methods.
By counting the number of times of being the best estimator across all 16 experiments, qs has
smallest bias 9 times, qh has the smallest root mean squared error 8 times. The advantage of
the Hill type estimator does not seem to carry through in estimating the higher order-99%, and
99.5% quantiles. q̂ and qs are consistently the best with the smallest bias, standard deviation
and root mean squared error, where q̂ seems to have slightly larger bias, but smaller root mean
squared error relative to qs. qh always carries the largest bias, being better than qe in terms of
root mean squared error only in the case U is student-t distributed.

The choice of N could be important since the number of residuals exceeding the threshold
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is based on Û(n−N). We need to choose large Û(n−N) to reduce the bias from approximating
the tail distribution with GPD, but we need to keep N large (small Û(n−N)) to control the
variance of parameter estimates. We illustrate the impact from different N ’s on the performance
of different estimators for the 99% quantile of U with a simulation, where we set n = 1000,
m(x) = 3sin(3x), and use a student-t distributed U . The bias and root mean squared error
(RMSE) of the estimators qs, q̂, qh, and qe are plotted against N = 20, 25, · · · , 200 in Figures 2
and 3 respectively. We notice qe is negatively biased while qs and q̂ carry relatively small positive
biases. These three estimators’ biases are fairly stable across N . qh’s bias is influenced heavily
by N , being smallest when N ranges from 20 to 60, largest with N greater than 70. The strong
dependence of qh’s performance on N also exhibits in RMSE in Figure 2. Between N = 20 and
70, qh performs best, but its performance deteriorates quickly when N is larger than 70. As
expected, qs and q̂’s RMSE decrease with N from 20 to 70, but when N is larger than 70, their
RMSE’s are stable, close to each other, and are smaller than those of qh and qe. qs and q̂ almost
always dominate qe, which did not utilize the extreme value theory. The result indicates qh’s
performance is sensitive to the choice of N , requiring a small N to control its bias, while qs and
q̂ work well in a broader range of N ’s.

5. Summary and conclusions. The estimation of higher order quantiles associated with
the distribution of a random variable Y is of great interest in many applied fields. It is also
common for researchers in these fields to specify regression or location-scale models that relate
Y to a set of covariates X. As such, they are often interested in the estimation of high order
conditional quantiles associated with the conditional distribution of Y given X, i.e, qY |X=x(a) =
m(x) + q(a). The main difficulty in obtaining an estimator for qY |X=x rests on the fact that the
regression errors which could be used to estimate q(a) are not observed. In this paper we have
expanded the seminal work of Smith (1987), which considered the estimation of q(a) when the
associated random variable is observed, to the case where only regression residuals are available
for the estimation of q(a). Our results are based on a nonparametric estimation of the regression
and a ML estimation of the distribution tail based on a GPD. We provide a full asymptotic
characterization of the ML estimators for the parameters of the GPD and for the estimator q̂(a)
for q(a). It is encouraging to see that the asymptotic normality results of Smith are preserved
albeit with a loss of estimation precision.

It should be emphasized that richer location-scale or regression models than the one we
considered is an important extension of our work. For example, in empirical finance, the evolution
of returns of a financial asset is normally modeled by dynamic location-scale models that require
the estimation of both a regression and a conditional skedastic function. Furthermore, in this
context the independent and identically distributed assumption we used throughout is normally
inadequate. However, we are encouraged that our work has provided a framework in which these
richer stochastic specifications can be studied.

Appendix 1 - Proofs. Throughout the proofs, C will represent an inconsequential and
arbitrary constant that may take different values in different locations. χA denotes the indica-
tor function for the set A, P (A) denotes the probability of event A from the probability space
(Ω,F , P ).

Lemma 1 .

Proof. Given the results described in section 3.1 and Taylor’s Theorem, for λ1, λ2 ∈ [0, 1],
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we have

1
δ2
N

∂

∂t
L̃TN (t, τ) =

1
N

N∑
i=1

∂

∂σ
log g(Z̃i;σN , k0)

σN
δN

+
1
N

N∑
i=1

∂2

∂σ2
log g(Z̃i;σN (1 + δN tλ1), k0 + δNτλ2)σ2

N t

+
1
N

N∑
i=1

∂2

∂σ∂k
log g(Z̃i;σN (1 + δN tλ1), k0 + δNτλ2)σNτ = Ĩ1N + Ĩ2N + Ĩ3N

and

1
δ2
N

∂

∂τ
L̃TN (t, τ) =

1
N

N∑
i=1

∂

∂k
log g(Z̃i;σN , k0)

1
δN

+
1
N

N∑
i=1

∂2

∂k∂σ
log g(Z̃i;σN (1 + δN tλ1), k0 + δNτλ2)σN t

+
1
N

N∑
i=1

∂2

∂k2
log g(Z̃i;σN (1 + δN tλ1), k0 + δNτλ2)τ = Ĩ4N + Ĩ5N + Ĩ6N .

Let an = 1− N
n , Ẽi = {Ûi > q̃ (an)}, Ei = {Ui > qn (an)}, Zi = Ui− qn(an) and Z̃i = Ûi− q̃(an)

for i = 1, · · · , n. Then, from section 3.1, we have

Ĩ1N − I1N =
1
δN

(k−1
0 − 1)

 1
N

n∑
i=1

(1− k0Z̃i
σN

)−1
k0Z̃i
σN

χẼi −
(

1− k0Zi
σN

)−1 k0Zi
σN

χẼi


+

1
N

n∑
i=1

(
1− k0Zi

σN

)−1 k0Zi
σN

(
χẼi − χEi

))
=

1
δN

(k−1
0 − 1)(I11n + I12n)

We first study I11n. By the mean value theorem, for some λ ∈ [0, 1] and Z∗i = Zi + λ(Z̃i − Zi)
we have (

1− k0Z̃i
σN

)−1
k0Z̃i
σN

χẼi −
(

1− k0Zi
σN

)−1 k0Zi
σN

χẼi =
k0/σN(

1− k0Z∗i
σN

)2χẼi(Z̃i − Zi),

and consequently we can write

I11n = − 1
N

n∑
i=1

qn(an)
k0/σN(

1− k0Z∗i
σN

)2χẼi

(
m̂(Xi)−m(Xi)

qn(an)
+
q̃(an)− qn(an)

qn(an)

)
.

From Lemma 2 q̃(an)−qn(an)
qn(an) = Op(N−1/2). In addition, given that qn(an) → ∞ as n → ∞,

equation (4), and provided N ∝ n4/5−δ and h1n ∝ n−1/5 we have 1
qn(an)sup

x∈G
|m̂(x) − m(x)| =

op(N−1/2). Since σN = −qn(an)k0 we have that I11n ≤ Op(N−1/2)
(

1
N

n∑
i=1

(
1− k0Z∗i

σN

)−2
χẼi

)
.

Note that Z∗i = Zi + λ√
N
Op(1), hence

(10)
1
N

n∑
i=1

(
1− k0Z

∗
i

σN

)−2

χẼi =
1
N

N∑
j=1

(
1− k0(Zj + op(1))

σN

)−2

= Op(1),
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and consequently I11n = Op(N−1/2). We now consider I12n, which can be written as

I12n =
1
N

n∑
i=1

(
1− k0Zi

σN

)−1 k0Zi
σN

(
χẼi − χEi

)
χẼi∪Ei .

For δ1, δ2 > 0 we define the events A =
{
ω : |Ûi−Ui|qn(an) < δ1

}
and B =

{
ω : |q̃(an)−qn(an)|

qn(an) < δ2

}
and

note that Cc ⊆ Ac ∪Bc, where C = {ω : χẼi − χEi = 0}. Hence, χCc ≤ χAc + χBc and

I12n ≤ 1
N

n∑
i=1

∣∣∣∣∣
(

1− k0Zi
σN

)−1 k0Zi
σN

∣∣∣∣∣χAcχẼi∪Ei +
1
N

n∑
i=1

∣∣∣∣∣
(

1− k0Zi
σN

)−1 k0Zi
σN

∣∣∣∣∣χBcχẼi∪Ei
= I121n + I122n.

Since δ1 > 0 we have |Ûi−Ui|
δ1qn(an) > 1 on Ac and |q̃(an)−qn(an)|

δ2qn(an) > 1 on Bc. Therefore,

I121n <
1
N

n∑
i=1

∣∣∣∣∣
(

1− k0Zi
σN

)−1 k0Zi
σN

∣∣∣∣∣ |Ûi − Ui|δ1qn(an)
χẼi∪Ei and

I122n <
1
N

n∑
i=1

∣∣∣∣∣
(

1− k0Zi
σN

)−1 k0Zi
σN

∣∣∣∣∣ |q̃(an)− qn(an)|
δ2qn(an)

χẼi∪Ei .

Since k0 < 0 and σN > 0 we have that
∣∣∣∣(1− k0Zi

σN

)−1
k0Zi
σN

∣∣∣∣ < C. In addition, since 1
qn(an)sup

x∈G
|m̂(x)−

m(x)| = op(N−1/2) and the fact that χẼi∪Ei limits the number of nonzero terms in the sum
to at most 2N , we have I121n < C op(N−1/2). Similarly, by Lemma 2 I122n < C Op(N−1/2)
and we have I12n = Op(N−1/2). Combining the orders of I11n and I12n we conclude that
Ĩ1N − I1N = 1

δN
(k−1

0 − 1)Op(N−1/2). Since, δNN1/2 →∞ as n→∞ we have Ĩ1N − I1N = op(1).
We now turn to establishing that Ĩ4N − I4N = op(1). We write

Ĩ4N − I4 =
1
δN

 1
N

n∑
i=1

− 1
k2

0

log

(
1− k0Z̃i

σN

)
+

1
k0

(
1− 1

k0

)(
1− k0Z̃i

σN

)−1
k0Z̃i
σN

−
(
− 1
k2

0

log

(
1− k0Zi

σN

)
+

1
k0

(
1− 1

k0

)(
1− k0Zi

σN

)−1 k0Zi
σN

))
χẼi

+
1
N

n∑
i=1

(
− 1
k2

0

log

(
1− k0Zi

σN

)
+

1
k0

(
1− 1

k0

)(
1− k0Zi

σN

)−1 k0Zi
σN

))
(χẼi − χEi)

=
1
δN

(I41n + I42n).

First, note that

I41n =
1
k0

(
1− 1

k0

)
I11n −

1
k2

0

1
N

n∑
i=1

(
log

(
1− k0Z̃i

σN

)
− log

(
1− k0Zi

σN

))
χẼi .

Since we have already established that I11n = Op(N−1/2), it suffices to investigate the order of the
second term. By the mean value theorem, Lemma 2 and the fact that 1

qn(an)sup
x∈G
|m̂(x)−m(x)| =

op(N−1/2) we have

1
N

n∑
i=1

(
log

(
1− k0Z̃i

σN

)
− log

(
1− k0Zi

σN

))
χẼi <

1
k2

0

op(N−1/2)
1
N

n∑
i=1

(
1− k0Z

∗
i

σN

)−1

χẼi

+
1
k2

0

Op(N−1/2)
1
N

n∑
i=1

(
1− k0Z

∗
i

σN

)−1

χẼi .
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Using the same arguments as in (10), we have 1
N

n∑
i=1

(
1− k0Z∗i

σN

)−1
χẼi = Op(1), and consequently

I41n = Op(N−1/2). By the same arguments used when studying I12n, we have

I42n <
1
N

n∑
i=1

∣∣∣∣∣− 1
k2

0

log

(
1− k0Zi

σN

)
+

1
k0

(
1− 1

k0

)(
1− k0Zi

σN

)−1 k0Zi
σN

∣∣∣∣∣ |Ûi − Ui|δ1qn(an)
χẼi∪Ei

+
1
N

n∑
i=1

∣∣∣∣∣− 1
k2

0

log

(
1− k0Zi

σN

)
+

1
k0

(
1− 1

k0

)(
1− k0Zi

σN

)−1 k0Zi
σN

∣∣∣∣∣ |q̃(an)− qn(an)|
δ2qn(an)

χẼi∪Ei

= I421n + I422n,

and provided
∣∣∣∣− 1

k2
0
log

(
1− k0Zi

σN

)
+ 1

k0

(
1− 1

k0

) (
1− k0Zi

σN

)−1
k0Zi
σN

∣∣∣∣ < C we have I421n = op(N−1/2)

and I422n = Op(N−1/2). To verify the bound it is sufficient to show that
∣∣∣log (1− k0Zi

σN

)∣∣∣ < C

since
∣∣∣∣(1− k0Zi

σN

)−1
k0Zi
σN

∣∣∣∣ < C from the study of I12n. By the mean value theorem and for some

λi ∈ (0, 1) ∣∣∣∣log (1− k0Zi
σN

)∣∣∣∣ =
1
λi

∣∣∣∣∣
(

1− λik0Zi
σN

)−1 −k0λiZi
σN

∣∣∣∣∣ < C(11)

provided λi is bounded away from zero for all i. Given that I41n, I42n = Op(N−1/2) we have
Ĩ4N − I4N = op(1), since δNN1/2 →∞ as n→∞.

We now investigate the order of Ĩ2N − I2N . Consider arbitrary σ̇N = σN (1 + δN tλ1) and
k̇ = k0 + δNτλ2 and write

Ĩ2N − I2N =
1

(1 + tδNλ1)2

(−2)
(

1
k̇
− 1

)
1
N

N∑
j=1

(1− k̇Z̃j
σ̇N

)−1
k̇Z̃j
σ̇N
−
(

1− k̇Zj
σ̇N

)−1
k̇Zj
σ̇N


−
(

1
k̇
− 1

)
1
N

N∑
j=1

(1− k̇Z̃j
σ̇N

)−2(
k̇Z̃j
σ̇N

)2

−
(

1− k̇Zj
σ̇N

)−2(
k̇Zj
σ̇N

)2
 .

Hence, it suffices to examine

1
N

N∑
j=1

(1− k̇Z̃j
σ̇N

)−l (
k̇Z̃j
σ̇N

)l
−
(

1− k̇Zj
σ̇N

)−l (
k̇Zj
σ̇N

)l =
1
N

n∑
i=1

(1− k̇Z̃i
σ̇N

)−l (
k̇Z̃i
σ̇N

)l

−
(

1− k̇Zi
σ̇N

)−l (
k̇Zi
σ̇N

)lχẼi +
1
N

n∑
i=1

(
1− k̇Zi

σ̇N

)−l (
k̇Zi
σ̇N

)l
(χẼi − χEi) = Inl1 + Inl2

for l = 1, 2. By the mean value theorem, there exists Z∗i = Z̃i + λ(Z̃i − Zi) for λ ∈ (0, 1) such
that

Inl1 = l
1
N

n∑
i=1

(
1− k̇Z∗i

σ̇N

)−l−1
k̇

σ̇N

(
k̇Z∗i
σ̇N

)l−1

qn(an)
(
−m̂(Xi)−m(Xi)

qn(an)
− q̃(an)− qn(an)

qn(an)

)
χẼi .

Given Lemma 2 and the fact that qn(an)−1sup
x∈G
|m̂(x)−m(x)| = op(N−1/2) we can write

Inl1 ≤ Op(N−1/2)
l

N

n∑
i=1

∣∣∣∣∣∣
(

1− k̇Z∗i
σ̇N

)−l−1
k̇

σ̇N

(
k̇Z∗i
σ̇N

)l−1

qn(an)

∣∣∣∣∣∣χẼi .
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Since qn(an) = −σN/k0 we have

sup
ST

1
N

n∑
i=1

∣∣∣∣∣∣
(

1− k̇Z∗i
σ̇N

)−l−1
k̇

σ̇N

(
k̇Z∗i
σ̇N

)l−1

qn(an)

∣∣∣∣∣∣χẼi = sup
ST

∣∣∣∣∣ k̇k0

σN
σ̃

∣∣∣∣∣ 1
N

n∑
i=1

χẼisup
ST

∣∣∣∣∣∣
(
k̇Z∗i
σ̇N

)l−1

×
(

1− k̇Z∗i
σ̇N

)−l−1
∣∣∣∣∣∣ .

Now, given that δN → 0 we have for N sufficiently large sup
ST

∣∣∣ k̇k0 σNσ̃ ∣∣∣ < C. In addition, this fact

combined with |Z̃i−Zi|qn(an) = op(1) uniformly (from equation (4) and Lemma 2) gives

sup
ST

∣∣∣∣∣∣
(
k̇Z∗i
σ̇N

)l−1(
1− k̇Z∗i

σ̇N

)−l−1
∣∣∣∣∣∣ < C

and consequently Inl1 = Op(N−1/2) uniformly in ST . Now, as we have argued previously, we can
write

|Inl2| ≤
1
N

n∑
i=1

∣∣∣∣∣∣
(

1− k̇Zi
σ̇N

)−l (
k̇Zi
σ̇N

)l∣∣∣∣∣∣χAcχẼi∪Ei +
1
N

n∑
i=1

∣∣∣∣∣∣
(

1− k̇Zi
σ̇N

)−l (
k̇Zi
σ̇N

)l∣∣∣∣∣∣χBcχẼi∪Ei
= Inl21 + Inl22

where Inl21 <
1
N

n∑
i=1

∣∣∣∣(1− k̇Zi
σ̇N

)−l (
k̇Zi
σ̇N

)l∣∣∣∣ |Ûi−Ui|δ1qn(an)χẼi∪Ei and Inl22 <
1
N

n∑
i=1

∣∣∣∣(1− k̇Zi
σ̇N

)−l (
k̇Zi
σ̇N

)l∣∣∣∣×
|q̃(an)−qn(an)|

δ2qn(an) χẼi∪Ei . Given that δN → 0 we have for N sufficiently large that k̇ < 0, σ̇N > 0

and
∣∣∣∣(1− k̇Zi

σ̇N

)−l (
k̇Zi
σ̇N

)l∣∣∣∣ < C. In addition, as argued above, since 1
qn(an)sup

x∈G
|m̂(x) − m(x)| =

op(N−1/2) and the fact that χẼi∪Ei limits the number of nonzero terms in the sum to at most
2N , we have Inl21 < C op(N−1/2). Similarly, by Lemma 2 Inl22 < C Op(N−1/2) and we have
Inl2 = Op(N−1/2). Combining the orders of Inl1 and Inl2 we conclude that Ĩ2N − I2N = op(1)
uniformly on ST . Now, note that Ĩ3N − I3N = Ĩ5N − I5N and

Ĩ3N − I3N =
1

1 + δN tλ1

1
N

N∑
j=1

− 1
k̇2

(1− k̇Z̃j
σ̇N

)−1
k̇Z̃j
σ̇N
−
(

1− k̇Zj
σ̇N

)−1
k̇Zj
σ̇N


+

1
k̇

(
1
k̇
− 1

)(1− k̇Z̃j
σ̇N

)−2(
k̇Z̃j
σ̇N

)2

−
(

1− k̇Zj
σ̇N

)−2(
k̇Zj
σ̇N

)2


+
1
k̇

(
1
k̇
− 1

)(1− k̇Z̃j
σ̇N

)−1(
k̇Z̃j
σ̇N

)
−
(

1− k̇Zj
σ̇N

)−1(
k̇Zj
σ̇N

)
and using the same arguments as in the case of Ĩ2N − I2N we have Ĩ3N − I3N = op(1) and
Ĩ5N − I5N = op(1) uniformly on ST . Lastly, we investigate the order of Ĩ6N − I6N which can be
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written as

Ĩ6N − I6N =
1
N

N∑
j=1

(
2
k̇3

(
log

(
1− k̇Z̃j

σ̇N

)
− log

(
1− k̇Zj

σ̇N

))

+
1
k̇

(1− k̇Z̃j
σ̇N

)−1(
k̇Z̃j
σ̇N

)
−
(

1− k̇Zj
σ̇N

)−1(
k̇Zj
σ̇N

)
+

1
k̇3

(1− k̇Z̃j
σ̇N

)−1(
k̇Z̃j
σ̇N

)
−
(

1− k̇Zj
σ̇N

)−1(
k̇Zj
σ̇N

)
− 1
k̇2

(
1
k̇
− 1

)(1− k̇Z̃j
σ̇N

)−2(
k̇Z̃j
σ̇N

)2

−
(

1− k̇Zj
σ̇N

)−2(
k̇Zj
σ̇N

)2


=
2
k̇3

1
N

N∑
j=1

(
log

(
1− k̇Z̃j

σ̇N

)
− log

(
1− k̇Zj

σ̇N

))
+ op(1) uniformly in ST .(12)

The last equality follows form the arguments used above when investigating the order of Ĩ2N −
I2N . The first term in equation (12) can be written as (excluding the constant 2/k̇3)

(13)
1
N

n∑
i=1

(
log

(
1− k̇Z̃i

σ̇N

)
− log

(
1− k̇Zi

σ̇N

))
χẼi +

1
N

n∑
i=1

log

(
1− k̇Zi

σ̇N

)
(χẼi − χEi).

Using the mean value theorem, Lemma 2 and 1
qn(an)sup

x∈G
|m̂(x)−m(x)| = op(N−1/2) we have

1
N

n∑
i=1

(
log

(
1− k̇Z̃i

σ̇N

)
− log

(
1− k̇Zi

σ̇N

))
χẼi ≤

(
op(N−1/2) +Op(N−1/2)

)

× 1
N

n∑
i=1

∣∣∣∣∣∣
(

1− k̇Z∗i
σ̇N

)−1
k̇

σ̇N

∣∣∣∣∣∣χẼi
=
(
op(N−1/2) +Op(N−1/2)

)
Op(1) = op(1)

uniformly in ST using the same arguments given above. Lastly, the second term in (13) can be
written as

1
N

n∑
i=1

log

(
1− k̇Zi

σ̇N

)
(χẼi − χEi)χẼi∪Ei ≤

1
N

n∑
i=1

∣∣∣∣∣log
(

1− k̇Zi
σ̇N

)∣∣∣∣∣χAcχẼi∪Ei
+

1
N

n∑
i=1

∣∣∣∣∣log
(

1− k̇Zi
σ̇N

)∣∣∣∣∣χBcχẼi∪Ei
<

1
N

n∑
i=1

∣∣∣∣∣log
(

1− k̇Zi
σ̇N

)∣∣∣∣∣ |Ûi − Ui|δ1qn(an)
χẼi∪Ei

+
1
N

n∑
i=1

∣∣∣∣∣log
(

1− k̇Zi
σ̇N

)∣∣∣∣∣ |q̃(an)− qn(an)|
δ2qn(an)

χẼi∪Ei

As argued above, given that δN → 0 as N →∞ there exists N sufficiently large such that k̇ < 0,
σ̇N > 0 and we have that

∣∣∣log (1− k̇Zi
σ̇N

)∣∣∣ < C as in equation (11). In addition, by Lemma 2,
1

qn(an)sup
x∈G
|m̂(x) − m(x)| = op(N−1/2) and the fact that χẼi∪Ei limits the number of nonzero

terms in the sum to at most 2N , we have that 1
N

n∑
i=1
log

(
1− k̇Zi

σ̇N

)
(χẼi−χEi)χẼi∪Ei = op(1).
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Lemma 2 Under assumptions A1-A5 and conditions FR1 and FR2 we have

N1/2
(
q̃ (an)− qn (an)

q (an)

)
= Op(1), where an = 1− N

n .

Proof. We write

√
N

(
q̃ (an)− qn (an)

q (an)

)
=
√
N

(
q̃ (an)− q (an)

q (an)

)
−
√
N

(
qn (an)− q (an)

q (an)

)
= T1n − T2n.

We first show that T2n converges in distribution, which implies T2n = Op(1). Note that

P (T2n ≤ z) = P

(
nk0√
N

(F (yn)− an) ≤ nk0√
N

(Fn(yn)− F (yn))
)

with yn = q(an) + zσn and σn = q(an)√
N

. By the mean value theorem, F (yn) = an + f(q∗(an))σnz

where q∗(an) = q(an) + λσnz = q(an)(1 + λzN−1/2) for some λ ∈ [0, 1]. Thus,

nk0√
N

(F (yn)− an) =
nk0

N
f(q∗(an))q(an)z = k0

(1− F (q∗(an)))n
N

q(an)f(q∗(an))
1− F (q∗(an))

z.

Since q∗(an) = q(an)(1 + o(1)) we have that lim
n→∞

(1−F (q∗(an)))n
N = 1. In addition, by Proposition

1.15 in Resnick (1987) lim
n→∞

q(an)f(q∗(an))
1−F (q∗(an)) = − 1

k0
, hence lim

n→∞
nk0√
N

(F (yn)−an) = −z. We now show

that n√
N

(Fn(yn)−F (yn)) d→ N(0, 1). First, we observe that n√
N
−
√
n(1−F (yn))

1−F (yn) = o(1), hence we
show that

(14)
√
n(1− F (yn))
1− F (yn)

(Fn(yn)− F (yn)) =
n∑
i=1

Zin
d→ N(0, 1)

where Zin = (1−F (yn))−1/2
√
n

(χ{Ui ≤ yn} − E(χ{Ui ≤ yn)}). It is readily verified that E(Zin) = 0

and V (Zin) = n−1F (yn). Hence, given that
n∑
i=1
E(|Zin|3) ≤ 2(n(1− F (yn)))−1/2 = o(1) we have

by Liapounov’s CLT that n√
N

(Fn(yn)− F (yn)) d→ N(0, 1). Hence, T2n
d→ N(0, k2

0).
We now show that T1n = Op(1) by establishing that T1n converges in distribution. As above,

(15) P (T1n ≤ z) = P

(
nk0√
N

(F (yn)− an) ≤ nk0√
N

(F̃ (yn)− F (yn))
)
,

and we establish that n√
N

(F̃ (yn)−F (yn)) d→ N(0, 1). We start by noting that for some λ ∈ [0, 1]

F̃ (yn) =
∫ yn

−∞

1
nh2n

n∑
i=1

K2

(
y − Ui
h2n

)
dy −

∫ yn

−∞

1
nh2

2n

n∑
i=1

K
(1)
2

(
y − Ui
h2n

)
dy(Ûi − Ui)

+
1
2

∫ yn

−∞

1
nh3

2n

n∑
i=1

K
(2)
2

(
y − U∗i
h2n

)
dy(Ûi − Ui)2 = Q1n +Q2n +Q3n.

where U∗i = λUi + (1− λ)Ûi. Therefore,

n√
N

(F̃ (yn)− F (yn)) =
n√
N

((Q1n − F (y)) +Q2n +Q3n) .
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We first examine Q3n. Given (4) and the fact that K(2)
2 is symmetric (A1) we have that

Q3n ≤ Op


((

nh1n
log n

)−1/2
+ h2

1n

)2

h2n

 1
nh2n

n∑
i=1

∣∣∣∣K(1)
2

(
yn − U∗i
h2n

)∣∣∣∣ .
Using Taylor’s Theorem we can write for some λ ∈ [0, 1] and U∗∗i = λUi + (1− λ)U∗i that

1
nh2n

n∑
i=1

∣∣∣∣K(1)
2

(
yn − U∗i
h2n

)∣∣∣∣ ≤ 1
nh2n

n∑
i=1

∣∣∣∣K(1)
2

(
yn − Ui
h2n

)∣∣∣∣+ 1
nh2

2n

n∑
i=1

∣∣∣∣K(2)
2

(
yn − U∗∗i
h2n

)
(U∗i − Ui)

∣∣∣∣ .
Provided that |K(1)

2 (x)| < C on the bounded support S2 (A1) and given that f(yn) → 0 as

n → ∞ we have 1
nh2n

n∑
i=1

∣∣∣K(1)
2

(
yn−Ui
h2n

)∣∣∣ = op(1). Given that U∗i − Ui = λ(m(Xi) − m̂(Xi)) and

(4) we have 1
nh2

2n

n∑
i=1

∣∣∣K(2)
2

(
yn−U∗∗i
h2n

)
(U∗i − Ui)

∣∣∣ ≤ Op

((
nh1n
log n

)−1/2
+h2

1n

h2
2n

)
1
n

n∑
i=1

∣∣∣K(2)
2

(
yn−U∗∗i
h2n

)∣∣∣ ≤
Op

((
nh1n
log n

)−1/2
+h2

1n

h2
2n

)
. Hence, this term is bounded in probability if

(
nh1n
log n

)−1/2
+h2

1n

h2
2n

= O(1),

which follows if h1n = O(h2n) and nh1nh
4
2n = O(log n). These orders are satisfied by taking

h1n ∝ n−1/5 and h2n ∝ n−1/5+δ for δ > 0. Hence, under these conditions

(16)
n√
N
Q3n =

n√
N
Op


((

nh1n
log n

)−1/2
+ h2

1n

)2

h2n

 = op(1), provided N ∝ n4/5−δ.

Q2n = 1
n

n∑
i=1

1
h2n

K2

(
yn−Ui
h2n

)
(m̂(Xi)−m(Xi)), and using the fact that

m̂(x)−m(x)− 1
nh1nfX(x)

n∑
t=1

K1

(
Xt − x
h1n

)
Y ∗t = Op

((nh1n

log n

)−1/2

+ h2
1n

)2


uniformly over a compact set G, with Y ∗t = m(1)(x)(Xt − x) + 1
2m

(2)(x∗)(Xt − x)2, x∗ = λXt −
(1− λ)x and λ ∈ [0, 1], we can write

Q2n =
1
n2

n∑
i=1

n∑
t=1

1
h2nfX(Xi)

K2

(
yn − Ui
h2n

)
1
h1n

K1

(
Xt −Xi

h1n

)
m(1)(Xi)(Xt −Xi)

+
1
n2

n∑
i=1

n∑
t=1

1
h2nfX(Xi)

K2

(
yn − Ui
h2n

)
1
h1n

K1

(
Xt −Xi

h1n

)
1
2
m(2)(X∗t )(Xt −Xi)2

+
1
n2

n∑
i=1

n∑
t=1

1
h2nfX(Xi)

K2

(
yn − Ui
h2n

)
1
h1n

K1

(
Xt −Xi

h1n

)
Ut +Op

((nh1n

log n

)−1/2

+ h2
1n

)2


= Q21n +Q22n +Q23n +Op

((nh1n

log n

)−1/2

+ h2
1n

)2
 .

We will obtain the order of each Q2jn for j = 1, 2, 3 separately. Let

ψn(Zi, Zt) =
1

fX(Xi)h2n
K2

(
yn − Ui
h2n

)
1
h1n

K1

(
Xt −Xi

h1n

)
Ut,
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for Zi = (Xi, Ui) and write Q23n = 1
2n2

n∑
i=1

n∑
t=1

(ψn(Zt, Zi) + ψn(Zi, Zt)) = 1
2n2

n∑
i=1

n∑
t=1
φn(Zi, Zt)

where φn(Zt, Zi) is a symmetric function. The partial sum for the case where i = t is denoted

by Q′23n = K1(0)
n2h2nh1n

n∑
i=1

1
fX(Xi)

K2

(
yn−Ui
h2n

)
Ui, and given that fU|X(u)

f(u) → 1 as u → ∞, Proposition

1.15 in Resnick (1987) and 1−F (yn−h2nu)
1−F (yn) → 1 as n → ∞, we have by Lebesgue’s dominated

convergence theorem that n√
N
Q′23n = op(1). For the case where i 6= t we write the remaining

partial sums as

Q′′23n =
1
n

n∑
t=1

E(φn(Zt, Zi)|Zt)−
1
2
E(φn(Zt, Zi)) +Op

(
n−1(E(φ2

n(Zt, Zi)))1/2
)

Given that E(Ui|Xi) = 0, we have E(φn(Zt, Zi)) = 0 and

E(φn(Zt, Zi)|Zt) =
1
n

n∑
i=1

E

(
1

fX(Xi)
1
h1n

K1

(
Xt −Xi

h1n

)
1
h2n

K2

(
yn − Ui
h2n

)
|Xt

)
Ut =

1
n

n∑
i=1

Ztn

with E(Ztn) = 0. As above, using A4, Proposition 1.15 in Resnick (1987) and Lebesgue’s domi-
nated convergence theorem we have that E

(nyn
N Z2

tn

)
→ −k−1

0 . Using similar arguments we have

n−1E
(
φ2
n(Zt, Zi)

)1/2 = O

(
n−1

(
N

nynh1nh2n

)1/2
)

. Consequently,

n√
N
Op

(
n−1E

(
φ2
n(Zt, Zi)

)1/2
)

= Op

((
1

nh1nh2nyn

)1/2
)

= op
(
(nh1nh2n)−1/2

)
= op(1)

since yn →∞ and nh1nh2n →∞. Hence, we can write that n√
N

√
ynQ

′′
23n = 1

n

n∑
i=1
Ztn
√
yn+op (1).

Since E(Ztn
√
yn) = 0 and E

(nyn
N Z2

tn

)
→ −k−1

0 , by Liapounov’s CLT we have n√
N

√
ynQ

′′
23n

d→
N(0,−k−1

0 ), and since
√
yn →∞ as n→∞ we have that n√

N
Q′′23n = op(1).

Using similar arguments and manipulations we obtain n√
N
Q21n = op

(
h2

1n

√
N
)

+ op (1) and
n√
N
Q22n = op

(
h2

1n

√
N
)

+ op (1). Hence, combining the orders for Q21n, Q22n and Q23n we have

(17)
n√
N
Q2n = op

(
h2

1n

√
N
)

+ op(1) +
n√
N
Op

((nh1n

log n

)−1/2

+ h2
1n

)2
 .

Given that h1n ∝ n−1/5 and h2n ∝ n−1/5+δ for δ > 0 and N ∝ n4/5−δ, n√
N
Q2n = op(1).

We now show that n√
N

(Q1n − F (yn)) d→ N(0, 1). First, we put q1n = 1
h2n

∫ yn
−∞K2

(
y−Ui
h2n

)
dy

and write

n√
N

(Q1n − F (yn)) =
n∑
i=1

1√
n(1− F (yn))

(q1n − E(q1n)) +
n∑
i=1

1√
n(1− F (yn))

(E(q1n)− F (yn))

= I1n + I2n.

Clearly, E
(

1√
n(1−F (yn))

(q1n − E(q1n))
)

= 0 and V

(
1√

n(1−F (yn))
(q1n − E(q1n))

)
= s2n

n(1−F (yn))

where

s2
n =

∫ 1
h2n

b

(
yn − u
h2n

)
F (u)du−

(∫ 1
h2n

K2

(
yn − u
h2n

)
F (u)du

)2

and b(x) = 2K2(x)
∫ x
−∞K2(y)dy. Define s2 = F (yn)(1−F (yn)) and write s2n

(1−F (yn)) = s2n−s2
1−F (yn) +

F (yn). Since, s2n−s2
1−F (yn) = o(h2n) and F (yn)→ 1 as n→∞ we have s2n

1−F (yn) → 1. By Liapounov’s
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CLT, I1n
d→ N(0, 1) provided that E(|Zin|3)→ 0 as n→∞, where

Zin =
1√

n(1− F (yn))

(
1
h2n

∫ yn

−∞
K2

(
y − Ui
h2n

)
dy − E

(
1
h2n

∫ yn

−∞
K2

(
y − Ui
h2n

)
dy

))
.

The condition is verified by noting that∣∣∣∣( 1
h2n

∫ yn

−∞
K2

(
y − Ui
h2n

)
dy − E

(
1
h2n

∫ yn

−∞
K2

(
y − Ui
h2n

)
dy

))∣∣∣∣ ≤ 2

since 1
h2n

∫ yn
−∞K2

(
y−Ui
h2n

)
dy ≤ 1. Consequently, |Zin| ≤ 2√

n(1−F (yn))
and

E(|Zin|3) ≤ 2√
n(1− F (yn))

s2
n

n(1− F (yn))
→ 0 as n→∞.

Integrating by parts we have

|E (q1n)− F (yn)| =

∣∣∣∣∣∣
∫

(−h2n)ψK2(ψ)f(yn) +
m−1∑
j=1

(−h2nψ)j+1

(j + 1)!
f (j)(yn) +

(−h2nψ)m+1

(m+ 1)!
f (m)(y∗n)dψ

∣∣∣∣∣∣ ,
where y∗n = λ(yn − h2nψ) + (1 − λ)yn for some λ ∈ [0, 1]. Since K2 is an mth-order kernel and

|f (m)(u)| < C, we have that |E (q1n)− F (yn)| ≤ hm+1
2n

(m+1)!

∫
|ψm+1K2(ψ)|dψ = O(hm+1

2n ). Hence,

I2n = O
(

n√
N
hm+1

2n

)
= o(1) and

(18)
n√
N

(Q1n − F (yn)) d→ N(0, 1).

Equations (16), (17), and (18) show that n√
N

(F̃ (yn) − F (yn)) d→ N(0, 1), and by consequence
T1n = Op(1) which completes the proof.

Theorem 1

Proof. Let r̃N = σ̃N
σN

= 1 + δN t
∗, k̃ = k0 + δNτ

∗ and note that

(19)

 1
δ2N

∂
∂tLTN (t∗, τ∗)

1
δ2N

∂
∂τLTN (t∗, τ∗)

 =
1

δNN

( ∑N
j=1

∂
∂rN

log g(Z̃j ; r̃NσN , k̃)∑N
j=1

∂
∂k log g(Z̃j ; r̃NσN , k̃)

)
=

(
0
0

)
.

For some λ1, λ2 ∈ [0, 1] let k∗ = λ2k0 + (1− λ2)k̃, r∗N = λ1 + (1− λ1)r̃N ,

HN (r∗N , k
∗) =

1
N

N∑
j=1

 ∂2

∂r2N
log g(Z̃j ; r∗NσN , k

∗) ∂2

∂k∂rN
log g(Z̃j ; r∗NσN , k

∗)
∂2

∂k∂rN
log g(Z̃j ; r∗NσN , k

∗) ∂2

∂k∂k log g(Z̃j ; r∗NσN , k
∗)

 and

vN (1, k0) =
√
N

(
1
N

∑N
j=1

∂
∂rN

log g(Z̃j ;σN , k0)
1
N

∑N
j=1

∂
∂k log g(Z̃j ;σN , k0)

)
=
√
N

(
δN (Ĩ1N − I1N ) + δNI1N

δN (Ĩ4N − I4N ) + δNI4N

)
,

where Ĩ1N , I1N , Ĩ4N , I4N are as defined in Lemma 1. By a Taylor’s expansion of the first order
condition in (19) around (1, k0) we have

(20) HN (r∗N , k
∗)
√
N

(
r̃N − 1
k̃ − k0

)
= vN (1, k0).
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We start by investing the asymptotic properties of vN (1, k0). Let

b1 = −α(1 + α)
2 + α

, b2 =

(
−α

2(1 + α)
2 + α

+
α3

1 + α

)

and observe that from Lemma 2 and the fact that qn(an)
q(an) − 1 = op(1) we have that

vN (1, k0) =

 b1
√
N q̃(an)−qn(an)

qn(an) + δN
√
NI1N + op(1)

b2
√
N q̃(an)−qn(an)

qn(an) + δN
√
NI4N + op(1)


=

 b1
√
N
(
q̃(an)−q(an)

q(an) − qn(an)−q(an)
q(an)

)
+ δN

√
NI1N + op(1)

b2
√
N
(
q̃(an)−q(an)

q(an) − qn(an)−q(an)
q(an)

)
+ δN

√
NI4N + op(1)


By Lemma 3 and the fact that N1 −N = Op(N1/2)( √

NδNI1N√
NδNI4N

)
=

 b1
√
N qn(an)−q(an)

q(an) + 1√
N

∑N
j=1

∂
∂σ log g(Z ′j ;σN , k0)σN + op(1)

b2
√
N qn(an)−q(an)

q(an) + 1√
N

∑N
j=1

∂
∂k log g(Z ′j ;σN , k0) + op(1)


where Z ′j = Uj − q(an) for Uj > q(an). Hence, letting bσ = E

(
∂
∂σ log g(Z ′j ;σN , k0)σN

)
and

bk = E
(
∂
∂k log g(Z ′j ;σN , k0)

)
we have

vN (1, k0)−
√
N

(
bσ
bk

)
=

 b1
√
N q̃(an)−q(an)

q(an) + 1√
N

(∑N
j=1

∂
∂σ log g(Z ′j ;σN , k0)σN − bσ

)
+ op(1)

b2
√
N q̃(an)−q(an)

q(an) + 1√
N

(∑N
j=1

∂
∂k log g(Z ′j ;σN , k0)− bk

)
+ op(1)

 .
Note that we can write

1√
N

 N∑
j=1

∂

∂σ
log g(Z ′j ;σN , k0)σN − bσ

 =
n∑
i=1

N−1/2
(
∂

∂σ
log g(Z ′j ;σN , k0)σN − bσ

)
χ{Ui>q(an)}

=
n∑
i=1

Zi1

and

1√
N

 N∑
j=1

∂

∂k
log g(Z ′j ;σN , k0)σN − bk

 =
n∑
i=1

N−1/2
(
∂

∂k
log g(Z ′j ;σN , k0)σN − bk

)
χ{Ui>q(an)}

=
n∑
i=1

Zi2.

Also, from Lemma 2 we have that
√
N q̃(an)−q(an)

q(an) is distributed asymptotically as
n∑
i=1

(−k0)(n(1−

F (yn)))−1/2(q1n−E(q1n)) + op(1) =
n∑
i=1
Zi3 + op(1) where q1n = 1

h2n

∫ yn
−∞K2

(
y−Ui
h2n

)
dy and yn =

q(an)(1 +N−1/2z) for arbitrary z. It can be easily verified that E(Zi1) = E(Zi2) = E(Zi3) = 0.
In addition,

V (Zi1) = N−1E

(
∂

∂σN
log g(Z ′j ;σN , k0)σN − bσ

)2

P ({Ui > q(an)})

= n−1E

(
∂

∂σN
log g(Z ′j ;σN , k0)σN − bσ

)2

= n−1
(

1
1− 2k0

+ o(1)
)
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where the last equality follows from Smith (1987). Using similar arguments we obtain

V (Zi2) = n−1

(
2α2

(1 + α)(2 + α)
+ o(1)

)

and from Lemma 2 we have that V (Zi3) = n−1k3
0F (yn) + o(h2n). We now define the vec-

tor ψn =
n∑
i=1

(Zi1, Zi2, Zi3)′ and for arbitrary 0 6= λ ∈ <3 we consider λ′ψn =
n∑
i=1

(λ1Zi1 +

λ2Zi2 + λ3Zi3) =
n∑
i=1
Zin. From above, we have that E(Zin) = 0 and V (Zin) =

∑3
l=1 λ

2
dE(Z2

id) +

2
∑

1≤d<d′≤3 λdλd′E(ZidZid′). First, we consider E(Zi1Zi2) which can be written as

E(Zi1Zi2) =
1
n
T1n −

N

n2
bσbk

where T1n = E
(

∂
∂σN

log g(Z ′j ;σN , k0)σN ∂
∂k log g(Z ′j ;σN , k0)

)
. Since bσ = Cφ(U(n−N))

1+α−ρ +o(φ(U(n−N)))

and bk = − Cαφ(U(n−N))

(α−ρ)(1+α−ρ) + o(φ(U(n−N))) we have that

E(Zi1Zi2) =
1
n
T1n −O

(
(N1/2φ(U(n−N)))2

n2

)
=

1
n
T1n − n−2O(1)

since N1/2φ(U(n−N)) = O(1). Now, note that

E (T1n) = −bk −
1
k0

(
1
k0
− 1

)2

E

((
1− k0Z

′
i

σN

)−2 (k0Z
′
i

σN

)2
)

− 1
k2

0

(
1
k0
− 1

)
E

(
log

(
1− k0Z

′
i

σN

)(
1− k0Z

′
i

σN

)−1 (k0Z
′
i

σN

))
.

From Smith (1987) we have that E
((

1− k0Z′i
σN

)−2 (k0Z′i
σN

)2
)

= 2
(1+α)(2+α) + O(φ(U(n−N))) and

bk = O(φ(U(n−N))). From Lemma 4 we have that

E

(
log

(
1− k0Z

′
i

σN

)(
1− k0Z

′
i

σN

)−1 (k0Z
′
i

σN

))
= − 1

α
+

α

(1 + α)2
+O(φ(U(n−N)))

which combined with the orders obtained for the other components of the expectation and the
fact that k0 = −α−1 give

E(Zi1Zi2) = − 1
n(k0 − 1)(2k0 − 1)

+
1
n
φ(U(n−N))O(1)−O(n−2).

We now turn to E(Zi1Zi3) which can be written as

E(Zi1Zi3) = T2n − E
(
N−1/2

(
∂

∂σN
log g(Z ′j ;σN , k0)σN

)
χUi>q(an)

)
E(q1n)(n(1− F (yn)))−1/2,

where T2n = E
(
N−1/2

(
∂

∂σN
log g(Z ′j ;σN , k0)σN

)
χUi>q(an)(n(1− F (yn)))−1/2q1n

)
. We note that

E

(
N−1/2

(
∂

∂σN
log g(Z ′j ;σN , k0)σN

)
χ{Ui>q(an)}

)
=
√
N

n
bσ =

√
N

n
O(φ(U(n−N))),

from Lemma 2 E(q1n) = F (yn)+O(hm+1
2n ) = O(1) and since (n(1−F (yn)))−1/2 is asymptotically

equivalent to N−1/2, the second term in the covariance expression is of order
√
N

n
O(φ(U(n−N)))O(1)N−1/2 = n−1O(φ(U(n−N))).
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We now turn to T2n, the first term in the covariance expression. Since (n(1 − F (yn)))−1/2 is
asymptotically equivalent to N−1/2, we have by the Cauchy-Schwartz inequality

T2n =
1
n
E

(
∂

∂σN
log g(Z ′j ;σN , k0)σNq1n

)
≤ 1
n

∣∣∣∣E ( ∂

∂σN
log g(Z ′j ;σN , k0)σNq1n

)∣∣∣∣
≤ 1
n

(
E

((
∂

∂σN
log g(Z ′j ;σN , k0)σN

)2
)
E(q2

1n)

)1/2

= n−1o(1).

Hence, E(Zi1Zi3) = o(n−1). In a similar manner we obtain E(Zi2Zi3) = o(n−1). Hence, nV (Zin) =
λ′V1λ+ o(1), where

V1 =


1

1−2k0
− 1

(k0−1)(2k0−1) 0
− 1

(k0−1)(2k0−1)
2

(k0−1)(2k0−1)

0 0 k2
0

 .
By Liapounov’s CLT

n∑
i=1
Zni

d→ N(0, λ′V1λ) provided that
n∑
i=1
E(|Zin|3) → 0. To verify this

condition, it suffices to show that

(i)
n∑
i=1

E(|Zi1|3)→ 0; (ii)
n∑
i=1

E(|Zi2|3)→ 0; (iii)
n∑
i=1

E(|Zi3|3)→ 0.

(iii) was verified in Lemma 2, so we focus on (i) and (ii).

For (i), note that
n∑
i=1
E(|Z1i|3) ≤ 1√

N
E
(∣∣(1/k0 − 1)(1− k0Z

′
i/σN )−1k0Z

′
i/σN − 1

∣∣3)→ 0 pro-

vided E(−(1− k0Z
′
i/σN )−3(k0Z

′
i/σN )3) < C, which is easily verified by noting that

−(1− k0Z
′
i/σN )−3(k0Z

′
i/σN )3 < −(1− k0Z

′
i/σN )−3(1− k0Z

′
i/σN )3 = 1.

Lastly,

n∑
i=1

E(|Z2i|3) ≤ 1√
N
E

∣∣∣∣∣− 1
k2

0

log

(
1− k0

Z ′i
σN

)
+

1
k0

(
1− 1

k0

)(
1− k0

Z ′i
σN

)−1

k0
Z ′i
σN

∣∣∣∣∣
3
→ 0

provided E
(
log(1− k0Z

′
i/σN )3

)
< C give the bound we obtained in case (i). By FR2 and

integrating by parts we have

E
(
log(1− k0Z

′
i/σN )3

)
= −

∫ ∞
0

log

(
1− k0

z

σN

)3

dFU(n−N)(z)

= −
1− F (U(n−N)(1 + z

U(n−N)
))

1− F (U(n−N))
(log(1 +

z

U(n−N)
))3|∞0

+
∫ ∞

0

L(U(n−N)(1 + z
U(n−N)

))

L(U(n−N))
(1 +

z

U(n−N)
)−α3(log(1 +

z

U(n−N)
))2

× (1 +
z

U(n−N)
)−1(1/U(n−N))dz = T1n + T2n.

Three repeated applications of L’Hôpital’s rule and Proposition 1.15 in Resnick (1987) gives
T1n = 0. For T2n we have that given FR2 and again integrating by parts and letting t =
1 + z/U(n−N)

T2n =
∫ ∞

1
3(log(t))2t−α−1dt+ φ(U(n−N))

∫ ∞
1

3(log(t))2t−α−1C

ρ
(tρ − 1)dt+ o(φ(U(n−N))).
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It is easy to verify that
∫∞
1 3(log(t))2t−α−1dt = 6

α3 and consequently T2n = 6
α3 +O(φ(U(n−N)))

which verifies (ii). By the Cramer-Wold theorem we have that ψn
d→ N(0, V1). Consequently,

for any vector γ ∈ <2 we have γ′
(
vN (σN , k0)−

√
N

(
bσ
bk

))
d→ N(0, γ′V2γ) where

V2 =

 k2
0−4k0+2
(2k0−1)2

− 1
k0(k0−1)

− 1
k0(k0−1)

2k3
0−2k2

0+2k0−1

k2
0(k0−1)2(2k0−1)

 .
Again, by the Cramer-Wold theorem

(
vN (σN , k0)−

√
N

(
bσ
bk

))
d→ N(0, V2). Hence, given

equation (20), provided that HN (σ∗N , k
∗)

p→ H we have

√
N

(
r̃N − 1
k̃ − k0

)
−H−1

√
N

(
bσ
bk

)
= H−1

(
vN (σN , k0)−

√
N

(
bσ
bk

))
d→ N

(
0, H−1V2H

−1
)
.

To see that HN (σ∗N , k
∗)

p→ H, first observe that whenever (t, τ) ∈ ST we have (r̃N , k̃) ∈ SR and
consequently (r∗N , k

∗) ∈ SR. In addition, from Lemma 1 and the results from Smith (1987) we
have HN (rN , k)

p→ −H uniformly on SR. By Theorem 21.6 in Davidson (1994) we conclude that
HN (σ∗N , k

∗)
p→ H.

Lemma 3 Let an = 1− N
n and for j = 1, · · · , N define Zj = Uj− qn(an) whenever Uj > qn(an)

and for j = 1, · · · , N1 define Z ′j = Uj − q(an) whenever Uj > q(an). If

∆σ =
1
N

N∑
j=1

∂

∂σ
log g(Zj ;σN , k0)σN −

1
N

N1∑
j=1

∂

∂σ
log g(Z ′j ;σN , k0)σN

and

∆k =
1
N

N∑
j=1

∂

∂k
log g(Zj ;σN , k0)− 1

N

N1∑
j=1

∂

∂k
log g(Z ′j ;σN , k0),

then N1/2∆σ = b1
√
N qn(an)−q(an)

q(an) + op(1) and N1/2∆k = b2
√
N qn(an)−q(an)

q(an) + op(1), where b1 =

−α(1+α)
2+α , b2 =

(
−α2(1+α)

2+α + α3

1+α

)
.

Proof. We first consider the case where N = N1. Then,

∆σ =
1
N

N∑
j=1

(
∂

∂σ
log g(Zj ;σN , k0)σN −

∂

∂σ
log g(Z ′j ;σN , k0)σN

)

=
1
N

N∑
j=1

(
1
k0
− 1

)(1− k0Zj
σN

)−1 k0Zj
σN

−
(

1−
k0Z

′
j

σN

)−1
k0Z

′
j

σN


By the mean value theorem, there exists λ ∈ [0, 1] and Z∗j = Z ′j + λ(q(an)− qn(an)) such that

(21) ∆σ =
qn(an)− q(an)

q(an)

(
1
k0
− 1

)
1
N

N∑
j=1

(
1− k0

σN
Z∗j

)−2

.
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Again, using the mean value theorem, we have that for some θ ∈ [0, 1] there is Z∗∗j = θZ ′j + (1−
θ)Z∗j = Z ′j + λ(1− θ)(q(an)− qn(an)) such that

1
N

N∑
j=1

((
1− k0

σN
Z∗j

)−2

−
(

1− k0

σN
Z ′j

)−2
)

=
1
N

N∑
j=1

2k0/σN(
1− k0

σN
Z∗∗j

)3 (Z∗j − Z ′j)

= −θ q(an)− qn(an)
q(an)

2q(an)
qn(an)

1
N

N∑
j=1

(
1− k0

σN
Z∗∗j

)−3

= Op(N−1/2)(1 + op(1))
1
N

N∑
j=1

(
1− k0

σN
Z∗∗j

)−3

where the last equality follows from the fact that q(an)
qn(an) = 1 + op(1) and Lemma 2. In addition,

1
N

N∑
j=1

(
1− k0

σN
Z∗∗j

)−3

=
1
N

N∑
j=1

(
1− k0

σN
Z ′j + (θ − θ2)(q(an)− qn(an))

)−3

=
1
N

N∑
j=1

(
1− k0

σN
Z ′j + op(1)

)−3

= Op(1)

using the same arguments as in the proof of Lemma 1. Hence,

1
N

N∑
j=1

(
1− k0

σN
Z∗j

)−2

= Op(N−1/2) +
1
N

N∑
j=1

(
1− k0

σN
Z ′j

)−2

=
α

2 + α
−

2Cφ(U(n−N))
(2 + α)(2 + α− ρ)

+ o(φ(U(n−N))) +Op(N−1/2)

where the last equality follows from Smith (1987). Consequently, since φ(U(n−N)) = O(N−1/2)
and substituting back in equation (21) we have that N1/2∆σ = b1N

1/2 qn(an)−q(an)
q(an) + op(1).

We now turn to the case where N1 > N . In this case we can write

N1/2∆σ = N1/2 1
N

N∑
j=1

(
∂

∂σ
log g(Zj ;σN , k0)σN −

∂

∂σ
log g(Z ′j ;σN , k0)σN

)

+N1/2 1
N

N1−N∑
j=1

∂

∂σ
log g(Z ′j ;σN , k0)σN .

The first term is b1N1/2 qn(an)−q(an)
q(an) + op(1) as in the case where N = N1. As in Smith (1987) we

have that the expectation of the second term is N1−N√
N

(
Cφ(U(n−N))

1+α−ρ + o(φ(U(n−N)))
)

which is op(1)

since φ(U(n−N)) = O(N−1/2) and N1−N√
N

= Op(1). In addition its variance is N1−N
N O(1) = op(1).

Hence, the last term is op(1), and we can write for the case where N1 > N that N1/2∆σ =
b1N

1/2 qn(an)−q(an)
q(an) +op(1). Similar arguments give us the same order for N1/2∆σ when N > N1.

The case for N1/2∆k follows, mutatis mutandis , using exactly the same arguments.

Lemma 4 E

(
log

(
1− k0Z′i

σN

) (
1− k0Z′i

σN

)−1 (k0Z′i
σN

))
= − 1

α + α
(1+α)2

+O(φ(U(n−N)))

Proof. We first observe that from the results in Smith (1987)

E

(
log

(
1− k0Z

′
i

σN

)(
1− k0Z

′
i

σN

)−1 (k0Z
′
i

σN

))
= −α−1 +O(φ(U(n−N)))

+ E

(
log

(
1− k0Z

′
i

σN

)(
1− k0Z

′
i

σN

)−1
)
.
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Using the notation for L(·) in FR2 and given that

FU(n−N)
(z) = 1−

L
((

1 + z
U(n−N)

)
U(n−N)

)
L(U(n−N))

(
1 +

z

U(n−N)

)−α

we can write E
(
log

(
1− k0Z′i

σN

) (
1− k0Z′i

σN

)−1
)

=
∫∞

0 log
(
1− k0z

σN

) (
1− k0z

σN

)−1
dFU(n−N)

(z). In-

tegrating by parts we have

E

(
log

(
1− k0Z

′
i

σN

)(
1− k0Z

′
i

σN

)−1
)

=
∫ ∞

0

L
((

1 + z/U(n−N)

)
U(n−N)

)
L(U(n−N))

(
1 + z/U(n−N)

)−α
×
(

1
U(n−N)

(
1 + z/U(n−N)

)−2

− 1
U(n−N)

log
(
1 + z/U(n−N)

) (
1 + z/U(n−N)

)−2
)
dz.

Setting t = 1 + z/U(n−N) we have that

E

(
log

(
1− k0Z

′
i

σN

)(
1− k0Z

′
i

σN

)−1
)

=
∫ ∞

1

L(tU(n−N))
L(U(n−N))

(t−α−2 − log(t)t−α−2)dt

and by FR2

E

(
log

(
1− k0Z

′
i

σN

)(
1− k0Z

′
i

σN

)−1
)

=
∫ ∞

1
(t−α−2 − log(t)t−α−2)dt

+ Cφ(U(n−N )
∫ ∞

1
(t−α−2 − log(t)t−α−2)

∫ t

1
uρ−1dudt

+ o(φ(U(n−N )) =
1

α+ 1
− 1

(1 + α)2
+O(φ(U(n−N ))

which combines with the order of the first equation in the proof to give the desired result.

Theorem 2 .

Proof. Let a ∈ (0, 1) and an = 1 − N
n < a. We are interested in estimating q(a) which we

write as q(a) = q(an) + yN,a. Estimating q(an) by q̃(an) and based on the GPD approximation

we define an estimator ŷN,a for yN,a as ŷN,a = σ̃N
k̃

(
1−

(
n(1−a)
N

)k̃)
. Note that, as defined, ŷN,a

satisfies

(22) 1− F̃ (q̃(an) + ŷN,a) =
N

n

(
1− k̃ŷN,a

σ̃N

)1/k̃

.

Let us pause and note that for a chosen N , equation (22) is satisfied with a distribution function
Ḟ that is not necessarily F̃ . However, given the continuity of F̃ , there exists N satisfying the
order relation a > 1−N/n for which (22) is satisfied by F̃ . Hence, to avoid additional notation
we proceed with F̃ . We define the estimator for q(a) as q̂(a) = q̃(an)+ ŷN,a. For σn = q(a)(n(1−
a))−1/2, arbitrary 0 < z and Vn = −k0

√
n/(1− a)1/2 we note that

P (σn(q̂(a)− q(a)) ≤ z) = P (1− a ≥ 1− F̃ (q(an) + yN,a + σnz)

= P (Vn((1− a)− (1− F (q(a) + σnz)) ≥ Vn((1− F̃ (q(an) + yN,a + σnz))
− (1− F (q(a) + σnz))).
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In addition, from the proof of Lemma 2 we have that limn→∞Vn((1 − a) − (1 − F (q(a) +
σnz) = z. Now, let Wn = Vn((1 − F̃ (q(an) + yN,a + σnz)) − (1 − F (q(a) + σnz)) and note

that n(1−F (q(a)))
Vn(1−F (q(a)+σnz)

Wn =
√
n(1− F (q(a)))

(
1−F̃ (q(a)+σnz)
1−F (q(a)+σnz)

− 1
)

= − 1
k0
Wn(1 + o(1)). We first

establish that √
n(1− F (q(a)))

(
1− F̃ (q(a) + σnz)
1− F (q(a) + σnz)

− 1

)
is asymptotically normally distributed. Without loss of generality consider yN = q(an)(ZN − 1)
for 0 < ZN → za < ∞. Note that if ZN = za, then yN,a = yN = q(an)(za − 1). Then,
q(a) + σnz = q(an)za(1 + z((1− a)n)−1/2) = q(an)ZN . By FR2

(q(an)ZN )α

q(an)α
1− F (q(an)ZN )

1− F (q(an)
= Z

−1/k0
N

1− F (q(an)ZN )
1− F (q(an)

since α = −1/k0

= 1 + k(ZN )φ(q(an)) + o(φ(q(an)))

where 0 < φ(q(an))→ 0 as q(an)→∞, k(ZN ) = C(ZρN−1)

ρ . Since we assume that N1/2Cφ(q(an))
α−ρ →

µ, we have that as ZN → za, k(ZN )φ(q(an))− k(za)N−1/2 µ(α−ρ)
C → 0 and consequently

(23) Z
−1/k0
N

1− F (q(an)ZN )
1− F (q(an)

= 1 + k(z)N−1/2µ(α− ρ)
C

+ o(N−1/2).

We observe that for the function h(σ, k, y) = − 1
k log

(
1− ky

σ

)
we can write

1− F̃ (q̃(an) + yN )
1− F̃ (q̃(an))

= exp(−h(σ̃N , k̃, yN ))

and using the notation in Theorem 1 and the mean value theorem gives

h(σ̃N , k̃, yN )− h(σN , k0, yN ) =
(
σN

∂
∂σh(σ∗N , k

∗, yN ) ∂
∂kh(σ∗N , k

∗, yN )
)( r̃N − 1

k̃ − k0

)

for σ∗N = λ1σ̃N + (1 − λ1)σN and k∗N = λ2k̃N + (1 − λ2)k0 and λ1, λ2 ∈ [0, 1]. It follows from
σN = −k0q(an) = − k0yN

ZN−1 that yN = (1−ZN )σN
k0

and from Theorem 1 we have

σN
∂

∂σ
h(σ∗N , k

∗, yN )
p→ −k−1

0 (z−1
a − 1) and

∂

∂k
h(σ∗N , k

∗, yN )
p→ k−2

0 log(za) + k−2
0 (z−1

a − 1).

Hence, if c′b =
(
−k−1

0 (z−1
a − 1) k−2

0 log(za) + k−2
0 (z−1

a − 1)
)

and

µ′p =
(

µ(1−k0)(1+2kρ)
1−k0+k0ρ

µ(1−k0)k0(1+ρ)
1−k0+k0ρ

)
we can write
(24)

c′b
√
N

(
r̃N − 1
k̃ − k0

)
d→ N(c′bµp, c

′
bH
−1V2H

−1) and
√
N(h(σ̃N , k̃, yN )− h(σN , k0, yN )) = Op(1).

Now, we can conveniently write,

1− F̃ (q(an) + yN )
1− F (q(an)− yN )

=
1− F̃ (q(an) + yN )

1− F̃ (q̃(an))
1− F (q(an))

1− F (q(an) + yN )
Z

1/k0
N Z

−1/k0
N .
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Note that 1−F̃ (q(an)+yN )

1−F̃ (q̃(an))
=
(
1− k̃yN

σ̃N

)1/k̃ (1−F̃ (q(an))

1−F̃ (q̃(an))

)
and

Z
−1/k0
N =

(
1− k0yN

σN

)−1/k0

= exp(h(σN , k0, yN )).

Furthermore from equation (23), Z1/k0
N

1−F (q(an))
(1−F (q(an)ZN )) − 1 = N−1/2

(
−k(z)µ(α−ρ)

C

)
+ o(N−1/2).

Hence,

1− F̃ (q(an) + yN )
1− F (q(an) + yN )

= Z
1/k0
N

1− F (q(an))
(1− F (q(an)ZN ))

1− F̃ (q(an))
(1− F̃ (q̃(an)))

exp(−h(σ̃N , k̃, yN )+h(σN , k0, yN )).

Now, we given that
1− F̃ (q(an))
1− F̃ (q̃(an))

− 1 = − F̃ (q(an))− F (q(an))
1− F (q(an))

and from equation (14) in Lemma 2 we have√
n(1− F (q(an))
1− F (q(an))

(1− F̃ (q(an))− (1− F (q(an))) d→ N(0, 1)

as q(an)→∞. In particular, using the notation adopted in Lemma 2 we have that√
n(1− F (q(an))
1− F (q(an))

(1− F̃ (q(an))− (1− F (q(an))) = −
n∑
i=1

√
n(1− F (q(an))(q1n − E(q1n)) + op(1)

=
n∑
i=1

Zi4 + op(1).

Hence,

1− F̃ (q(an) + yN )
1− F (q(an) + yN )

− 1 = Z
1/k0
N

1− F (q(an))
(1− F (q(an)ZN ))

1− F̃ (q(an))
(1− F̃ (q̃(an)))

exp(−h(σ̃N , k̃, yN )

+ h(σN , k0, yN ))− 1

and by equation (24) and the mean value theorem we have

exp(−h(σ̃N , k̃, yN ) + h(σN , k0, yN )) = 1− (h(σ̃N , k̃, yN )− h(σN , k0, yN )) + op(N−1/2).

Therefore, we write

√
N

(
1− F̃ (q(an) + yN )
1− F (q(an) + yN )

− 1

)
=
√
N

(
Z

1/k0
N

1− F (q(an))
(1− F (q(an)ZN ))

− 1
)

+
√
N

(
1− F̃ (q(an))

(1− F̃ (q̃(an)))
− 1

)
−
√
N(h(σ̃N , k̃, yN )− h(σN , k0, yN ))

+ op(1).

Since
√
N
(
Z

1/k0
N

1−F (q(an))
(1−F (q(an)ZN )) − 1

)
→ −k(z)µ(α−ρ)

C we focus on the joint distribution of the last
two terms. By equation (24) we have that

(25)
√
N(h(σ̃N , k̃, yN )− h(σN , k0, yN )) = c′b

√
N

(
r̃N − 1
k̃ − k0

)
+ op(1)
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and by Theorem 1 (adopting its notation) we have

√
N

(
r̃N − 1
k̃ − k0

)
−
√
N

(
bσ
bk

)
= (H−1 + op(1))

(
vN (1, k0)−

√
N

(
bσ
bk

))
,

where the last vector in this equality depends on
√
N q̃(an)−q(an)

q(an) which is asymptotically dis-

tributed as
∑n
i=1 Zi3 + op(1),

∑n
i=1 Zi2 and

∑n
i=1 Zi1. Hence, we define

√
N
(

1−F̃ (q(an))

(1−F̃ (q̃(an)))
− 1

)
=∑n

i=1 Zi4, let 0 6= d ∈ <4,

ε′n =
( ∑n

i=1 Zi1
∑n
i=1 Zi2

∑n
i=1 Zi3

∑n
i=1 Zi4

)
and consider d′εn =

∑n
i=1

∑4
δ=1 Ziδdδ =

∑n
i=1 Zni. Note that Zni forms an iid sequence with

E(Zni) = 0 and the asymptotic behavior of
∑n
i=1 Zi1,

∑n
i=1 Zi2 and

∑n
i=1 Zi3 was studied in

Theorem 1. In addition the asymptotic behavior of
∑n
i=1 Zi4 was studied in Lemma 2. Recall that

E(Z2
i4) = n−1(F (yn)+o(h2n)) and from Theorem 1 E(Zi1Zi4) = o(n−1) and E(Zi2Zi4) = o(n−1).

Here we examine

E(Zi3Zi4) = − k0

n((1− F (yn))(1− F (q(an))))1/2
E

(
q1n

1
h2n

∫ q(an)

−∞
K2

(
y − Ui
h2n

)
dy

)

− E(q1n)E

(
1
h2n

∫ q(an)

−∞
K2

(
y − Ui
h2n

)
dy

)
.

By Lemma 2 E(q1n) − F (yn) = O(hm+1
2n ) and similarly we have E

(
1
h2n

∫ q(an)
−∞ K2

(
y−Ui
h2n

)
dy
)
−

F (q(an)) = O(hm+1
2n ). Since in Lemma 2 we have yn = q(an) + σnz, then for κ(x) = h−1

2n

∫ x
−∞K2(

y−Ui
h2n

)
dy we can write

E

(
q1n

1
h2n

∫ q(an)

−∞
K2

(
y − Ui
h2n

)
dy

)
= E(κ(q(an) + σnz)κ(q(an)))(χ{q(an)=yn} + χ{q(an)6=yn}).

For z > 0 we have that q(an) 6= yn implies yn > q(an) so that

E(κ(q(an) + σnz)κ(q(an))χ{q(an)<yn}) ≤ Cχ{q(an)<yn} = C (F (q(an) + σnz)− F (q(an))) .

By FR2 limn→∞
F (q(an)+σnz)−F (q(an))

1−F (q(an)) = 0, hence

(1− F (q(an)))−1E(κ(q(an) + σnz)κ(q(an))χ{q(an)=yn}) = o(1)

and

E

(
q1n

1
h2n

∫ q(an)

−∞
K2

(
y − Ui
h2n

)
dy

)
= E

(
κ2(q(an))

)
+ o(1− F (q(an))).

Consequently,

E(Zi3Zi4) = − k0

n((1− F (yn))(1− F (q(an))))1/2

(
E
(
κ2(q(an))

)
+ o(F (q(an)))

)
− F 2(q(an)) +O(hm+1

2n ) = −k0

n
(F (q(an)) + o(1))

and V (Zin) = 1
nd
′V3d + o(n−1) where V3 =


1

1−2k0
− 1

(k0−1)(2k0−1) 0 0
− 1

(k0−1)(2k0−1)
2

(k0−1)(2k0−1) 0 0
0 0 k2

0 −k0

0 0 −k0 1

.

From the verification of Liapounov’s condition in Theorem 1 we have that d′εn
d→ N(0, d′V3d)
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and from the Cramer-Wold theorem εn
d→ N(0, V3). Now, from equation (25)

√
N(h(σ̃N , k̃, yN )− h(σN , k0, yN )) = c′bH

−1

(
vN (1, k0)−

√
N

(
bσ
bk

))
+ c′bH

−1
√
N

(
bσ
bk

)

hence by letting A.j represent the jth column of a matrix A, we write

√
N

(
1− F̃ (q(an) + yN )
1− F (q(an) + yN )

− 1

)
= −k(za)µ(α− ρ)

C
−
(
c′bH

−1
.1

n∑
i=1

Zi1 + c′bH
−1
.2

n∑
i=1

Zi2

+
(
c′bH

−1
.1 b1 + c′bH

−1
.2 b2

) n∑
i=1

Zi3

+ c′bH
−1
√
N

(
bσ
bk

))
+

n∑
i=1

Zi4 + op(1)

= −k(za)µ(α− ρ)
C

− c′bH−1
√
N

(
bσ
bk

)
+

(
−c′bH

−1
.1 −c′bH

−1
.2 −c′bH

−1
.1 b1 − c′bH

−1
.2 b2 1

)
εn + op(1).

Let η′ =
(
−c′bH

−1
.1 −c′bH

−1
.2 −c′bH

−1
.1 b1 − c′bH

−1
.2 b2 1

)
, then from the results above we

have η′εn
d→ N(0, η′V3η) where simple algebraic manipulations give η′V3η = c′bH

−1V2H
−1cb +

2c′b

(
2− k0

1− k0

)
+1. Consequently, if ζ ∼ N

(
−k(za)µ(α−ρ)

C , c′bH
−1V2H

−1cb + 2c′b

(
2− k0

1− k0

)
+ 1

)
,

then
√
N

(
1− F̃ (q(an) + yN )
1− F (q(an) + yN )

− 1−
(
−c′bH−1

(
bσ
bk

)))
d→ ζ,

and for yN = q(an)(ZN − 1) with ZN → za we immediately have

√
N

(
1− F̃ (q(a) + σnz)
1− F (q(a) + σnz)

− 1−
(
−c′bH−1

(
bσ
bk

)))
d→ ζ.

Lastly, since −Wn/k0 + o(1) =
√
n(1− F (q(a)))

(
1−F̃ (q(a)+σnz)
1−F (q(a)+σnz)

− 1
)

and if√
n(1− F (q(a))) =

√
n(1− a) ∝ N1/2,

that is, n(1− a)→∞ at the same rate as N , then

Wn
d→ N

(
(−k0)

(
−k(za)µ(α− ρ)

C
− c′bH−1

(
bσ
bk

))
,

k2
0

(
c′bH

−1V2H
−1cb + 2c′b

(
2− k0

1− k0

)
+ 1

))

which immediately gives,
√
n(1− a)

(
q̂(a)
q(a) − 1

)
d→ ζ1 where

ζ1 ∼ N
(

(−k0)

(
−k(za)µ(α− ρ)

C
− c′bH−1

(
bσ
bk

))
,

k2
0

(
c′bH

−1V2H
−1cb + 2c′b

(
2− k0

1− k0

)
+ 1

))
.
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Appendix 2 - Tables and figures.

Table 1 Mean(M), Bias(B) and Standard deviation(S)for parameter estimators
with log-gamma distributed U with α = 1, β = 0.25 (k0 = −4)

N = 50 m(x) = 3sin(3x) m(x) = x2

σN k0 σN k0

estimators M S M B S M S M B S
γ̂ .470 .113 -.200 3.800 .199 .469 .111 -.200 3.800 .199
γ̃ .430 .107 -.221 3.779 .203 .440 .108 -.220 3.780 .204
k̂h -.562 3.438 .077 -.634 3.366 .082

N = 100 m(x) = 3sin(3x) m(x) = x2

σN k0 σN k0

estimators M S M B S M S M B S
γ̂ .457 .074 -.223 3.777 .132 .456 .074 -.223 3.777 .133
γ̃ .431 .073 -.238 3.762 .135 .441 .073 -.233 3.767 .134
k̂h -.602 3.398 .057 -.647 3.353 .058

Table 2 Mean(M), Bias(B) and Standard deviation(S)for parameter estimators
with log-gamma distributed U with α = 1, β = 0.5 (k0 = −2)

N = 50 m(x) = 3sin(3x) m(x) = x2

σN k0 σN k0

estimators M S M B S M S M B S
γ̂ 1.673 .445 -.454 1.546 .227 1.670 .443 -.452 1.548 .227
γ̃ 1.572 .431 -.476 1.524 .228 1.589 .433 -.468 1.532 .232
k̂h -.888 1.112 .133 -.896 1.104 .133

N = 100 m(x) = 3sin(3x) m(x) = x2

σN k0 σN k0

estimators M S M B S M S M B S
γ̂ 1.626 .301 -.478 1.522 .154 1.615 .300 -.483 1.517 .155
γ̃ 1.569 .300 -.490 1.510 .158 1.563 .293 -.494 1.506 .157
k̂h -.899 1.101 .096 -.900 1.100 .095
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Table 3 Mean(M), Bias(B) and Standard deviation(S)for parameter estimators
with student-t distributed U with v = 3 (k0 = −1/3)

N = 50 m(x) = 3sin(3x) m(x) = x2

σN k0 σN k0

estimators M S M B S M S M B S
γ̂ .992 .228 -.204 .129 .204 .990 .225 -.206 .128 .202
γ̃ .959 .228 -.210 .124 .206 .960 .225 -.211 .122 .205
k̂h -.455 -.122 .063 -.461 -.128 .063

N = 100 m(x) = 3sin(3x) m(x) = x2

σN k0 σN k0

estimators M S M B S M S M B S
γ̂ .961 .155 -.235 .099 .136 .968 .154 -.229 .104 .136
γ̃ .940 .152 -.238 .095 .137 .949 .156 -.233 .101 .137
k̂h -.460 -.127 .045 -.463 -.130 .045

Table 4 Mean(M), Bias(B) and Standard deviation(S)for parameter estimators
with student-t distributed U with v = 2 (k0 = −1/2)

N = 50 m(x) = 3sin(3x) m(x) = x2

σN k0 σN k0

estimators M S M B S M S M B S
γ̂ 1.337 .332 -.405 .095 .222 1.335 .336 -.406 .094 .226
γ̃ 1.294 1.110 -.416 .084 .227 1.293 .417 -.414 .086 .231
k̂h -.565 -.065 .088 -.571 -.071 .089

N = 100 m(x) = 3sin(3x) m(x) = x2

σN k0 σN k0

estimators M S M B S M S M B S
γ̂ 1.302 .226 -.430 .070 .152 1.301 .228 -.429 .071 .155
γ̃ 1.272 .235 -.435 .065 .153 1.276 .271 -.434 .066 .158
k̂h -.575 -.075 .064 -.577 -.077 .065



HIGH ORDER QUANTILE ESTIMATION 33

Table 5 Bias (×0.1)(B), Standard deviation(S) and Root Mean Squared
Error(R) for quantile estimators with m(x) = 3sin(3x), and

log-gamma distributed U with α = 1, β = 0.25 (k0 = −4)

N = 50 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .076 .099 .099 -.117 .286 .287 -.248 .494 .495
q̂ 1.047 .080 .132 .280 .260 .262 -.040 .465 .465
qh .402 .061 .073 2.190 .320 .388 6.223 .634 .888
qe .841 .082 .118 -.182 .309 .310 -.944 .498 .507

N = 100 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .028 .067 .067 -.098 .198 .198 -.207 .337 .338
q̂ .589 .056 .081 .091 .182 .183 -.136 .319 .320
qh -.048 .043 .043 2.285 .235 .328 7.111 .476 .856
qe .488 .059 .077 -.155 .223 .223 -.695 .380 .386

Table 6 Bias(×0.1)(B), Standard deviation(S) and Root Mean Squared
Error(R) for quantile estimators with m(x) = x2, and
log-gamma distributed U with α = 1, β = 0.25 (k0 = −4)

N = 50 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .059 .097 .097 -.162 .286 .287 -.304 .496 .497
q̂ .265 .081 .085 -.305 .264 .266 -.512 .476 .479
qh -.445 .060 .075 2.358 .349 .421 8.088 .727 1.088
qe .103 .084 .084 -.691 .316 .323 -1.386 .510 .528

N = 100 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .029 .069 .069 -.122 .202 .202 -.246 .342 .342
q̂ .195 .058 .061 -.162 .189 .190 -.339 .329 .330
qh -.504 .044 .067 2.525 .249 .355 8.481 .515 .992
qe .112 .062 .063 -.383 .230 .233 -.916 .380 .391
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Table 7 Bias(×0.1)(B), Standard deviation(S) and Root Mean Squared
Error(R) for quantile estimators with m(x) = 3sin(3x), and

log-gamma distributed U with α = 1, β = 0.5 (k0 = −2)

N = 50 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .315 .420 .421 .183 1.919 1.919 1.188 4.059 4.060
q̂ .362 .352 .354 -1.345 1.773 1.778 -.615 3.869 3.869
qh -2.431 .249 .348 15.508 2.564 2.996 60.118 6.869 9.128
qe -.206 .360 .360 -3.625 2.096 2.127 -7.617 4.149 4.218

N = 100 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .160 .292 .293 .126 1.309 1.309 .554 2.672 2.673
q̂ .220 .250 .251 -.799 1.220 1.222 -.554 2.586 2.586
qh -2.493 .180 .307 15.757 1.753 2.357 59.571 4.545 7.493
qe -.054 .266 .266 -2.174 1.475 1.490 -4.803 2.972 3.010

Table 8 Bias(×0.1)(B), Standard deviation(S) and Root Mean Squared
Error(R) for quantile estimators with m(x) = x2, and
log-gamma distributed U with α = 1, β = 0.5 (k0 = −2)

N = 50 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .315 .416 .417 -.008 1.911 1.910 .799 4.028 4.028
q̂ .313 .351 .352 -1.447 1.771 1.777 -.983 3.898 3.899
qh -2.564 .250 .358 16.226 2.542 3.015 62.467 6.735 9.185
qe -.248 .363 .364 -3.928 2.097 2.133 -7.384 4.169 4.233

N = 100 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .115 .291 .291 .183 1.323 1.323 .959 2.714 2.716
q̂ .160 .247 .248 -.681 1.230 1.232 -.111 2.621 2.621
qh -2.517 .179 .309 15.776 1.743 2.351 59.676 4.514 7.482
qe -.108 .260 .261 -1.836 1.495 1.506 -4.241 3.075 3.104
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Table 9 Bias(×0.1)(B), Standard deviation(S) and Root Mean Squared
Error(R) for quantile estimators with m(x) = 3sin(3x), and

student-t distributed U with v = 3 (k0 = −1/3)

N = 50 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .099 .202 .203 .155 .641 .641 -.227 1.136 1.136
q̂ .504 .182 .188 -.002 .600 .600 -.628 1.086 1.088
qh -.658 .147 .161 2.528 .646 .694 7.728 1.175 1.406
qe .038 .188 .188 -1.616 .676 .695 -3.075 1.151 1.191

N = 100 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs -.001 .141 .141 .299 .443 .444 .075 .771 .771
q̂ .247 .123 .125 .185 .416 .417 -.196 .743 .743
qh -.753 .099 .124 2.529 .451 .517 7.738 .816 1.124
qe .013 .129 .129 -.918 .491 .500 -1.938 .848 .870

Table 10 Bias(×0.1)(B), Standard deviation(S) and Root Mean Squared
Error(R) for quantile estimators with m(x) = x2, and

student-t distributed U with v = 3 (k0 = −1/3)

N = 50 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .116 .199 .199 .203 .638 .638 -.143 1.133 1.133
q̂ .260 .175 .176 -.158 .602 .602 -.708 1.097 1.100
qh -.906 .140 .167 2.461 .647 .693 7.907 1.183 1.423
qe -.167 .180 .181 -1.622 .690 .708 -3.081 1.175 1.215

N = 100 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .063 .144 .144 .325 .441 .442 -.000 .765 .765
q̂ .222 .127 .129 .184 .420 .420 -.260 .741 .741
qh -.818 .103 .131 2.637 .459 .530 8.033 .829 1.154
qe -.017 .135 .135 -.867 .496 .503 -1.948 .852 .874
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Table 11 Bias(×0.1)(B), Standard deviation(S) and Root Mean Squared
Error(R) for quantile estimators with m(x) = 3sin(3x), and

student-t distributed U with v = 2 (k0 = −1/2)

N = 50 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .192 .318 .319 .579 1.362 1.363 .711 2.794 2.795
q̂ .986 .958 .963 .326 1.807 1.807 .050 2.990 2.990
qh -.188 .716 .716 3.335 2.717 2.737 10.080 4.915 5.017
qe .386 .943 .944 -2.337 1.922 1.936 -4.831 3.139 3.176

N = 100 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .071 .219 .219 .636 .957 .959 .545 1.919 1.920
q̂ .549 .248 .254 .493 .929 .930 .125 1.872 1.872
qh -.458 .216 .221 3.289 .980 1.034 10.047 1.929 2.174
qe .230 .262 .263 -1.255 1.092 1.099 -3.146 2.198 2.220

Table 12 Bias(×0.1)(B), Standard deviation(S) and Root Mean Squared
Error(R) for quantile estimators with m(x) = x2, and

student-t distributed U with v = 2 (k0 = −1/2)

N = 50 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .163 .315 .315 .535 1.380 1.381 .768 2.874 2.875
q̂ .793 .673 .678 .205 1.456 1.456 .016 2.869 2.869
qh -.399 .614 .615 3.327 1.548 1.583 10.439 2.907 3.089
qe .201 .669 .669 -2.653 1.653 1.674 -5.002 3.203 3.241

N = 100 α = 0.95 α = 0.99 α = 0.995
estimators B S R B S R B S R

qs .081 .220 .220 .565 .957 .958 .430 1.923 1.924
q̂ .492 .255 .260 .450 .946 .947 .109 1.920 1.920
qh -.533 .208 .215 3.342 1.021 1.074 10.297 2.021 2.268
qe .173 .261 .262 -1.108 1.165 1.170 -3.326 2.208 2.233
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Fig 1. Plot of quantile estimates across different α, with n = 1000, N = 100, m(x) = 3sin(3x) and student-t
distributed U with v = 2. 1 : true quantile, 2 : q̂, 3 : qh, and 4 : qe.

Fig 2. Bias of 99% quantile estimators with different N , with n = 1000, m(x) = 3sin(3x) and student-t distributed
U with v = 2. 1 : qs, 2 : q̂, 3 : qh, and 4 : qe.
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Fig 3. Root mean squared error of 99% quantile estimators with different N , with n = 1000, m(x) = 3sin(3x)
and student-t distributed U with v = 2. 1 : qs, 2 : q̂, 3 : qh, and 4 : qe.
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