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We consider the estimation of a high order conditional quantile
associated with the distribution of the regressand in a nonparametric
regression model. Our estimator is inspired by Pickands (1975) which
has shown that arbitrary distributions which lie in the domain of at-
traction of an extreme value type have tails that, in the limit, behave
as generalized Pareto distributions (GPD). Smith (1987) has studied
the asymptotic properties of maximum likelihood (ML) estimators
for the parameters of the GPD in this context, but in our paper the
relevant random variables used in estimation are residuals from a first
stage kernel based nonparametric estimator. We obtain convergence
in probability and distribution of the residual based ML estimator
for the parameters of the GPD as well as the asymptotic distribution
for a suitably defined quantile estimator. A Monte Carlo study pro-
vides evidence that our estimator behaves well in finite samples and is
easily implementable. Our results have direct application in finance,
particularly in the estimation of conditional Value-at-Risk, but other
researchers in applied fields such as insurance and hydrology will find
the results useful.

1. Introduction. Consider the following nonparametric regression model
(1) Y=m(X)+U

where m is a real valued function which belongs to a suitably restricted class (see section
3), EUIX = z) = 0 and V(U|X = z) = 1.! We assume that U has a strictly increasing
absolutely continuous distribution F(u) which belongs to the domain of attraction of an extremal
distribution (see Resnick (1987)). In this case, for a € (0,1), the conditional a-quantile associated
with the conditional distribution of ¥ given X, denoted by gy|x—z(a), is given by

dyix=z(a) = m(z) + q(a), where g(a) is the a-quantile associated with F'.

If U were observed, g(a) could be estimated from a random sample {U;}™; and combined with
an estimator for m to obtain an estimator for gy|x—,(a). In general, U is not observed, but
given a random sample {(¥;, X;)}?_; and an estimator m(z) for m(z) it is possible to obtain

(2) U, = Y; — (X,) fori=1,--- ,n.

The sequence of residuals {U;}?, can then be used to produce an estimator §(a) for g(a).
We can define gy |x—,(a) = m(z) + §(a) as an estimator for gy|x—.(a). In this paper, we are
particularly interested in the case where a is very large, i.e., in the vicinity of 1. These high
order conditional quantiles have become particularly important in empirical finance where they
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We assume that the conditional variance of U is 1 for simplicity. If 0 < V(U|X) = 6 < oo our results would
continue to hold as 6 can be estimated consistently and at a parametric rate. See, inter alia, Martins-I'ilho and
Yao (2006a).
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are called conditional Value-at-Risk (VaR) (see McNeil and Frey (2000); Martins-Filho and Yao
(2006b); Cai and Wang (2008)). It is interesting that the information that a is in the vicinity
of 1 is helpful in the estimation of g(a). Pickands (1975) showed that if F' is in the domain
of attraction of an extremal type distribution, denoted by F(x) € D(FE), for some fixed k and
function o(§)

(3) F(.%') S D(E) <~ liméﬂuwsup0<u<uoofﬁ ‘Ff(u) - G(ua 0(5)7 k)’ = 07
where F¢(u) = Fut)=FE) ) = lub{z : F(z) < 1} < oo is the upper endpoint of F,

1-F(¢€)
Uso > & € R, G is a generalized Pareto distribution (GPD), i.e.,

[ 1-Q-kyo itk £0050
G(yuavk) - { 1 _@xp(—y/o') ifk=0,0>0

with 0 <y < ocoif k < 0and 0 <y < o/k if k > 0.2 It is evident that F¢(u) represents the
conditional distribution of the exceedances over ¢ of an random variable U given that U > &.

The equivalence in (3) shows that G is a suitable parametric approximation for the upper
tail of F' provided that F' belongs to the domain of attraction of an extremal type distribution.
Intuitively, an estimator for g(a) can be obtained from the estimation of the parameters k and
o(&). Smith (1987) provides a comprehensive study of a maximum likelihood (ML) type estimator
for k and o(§) when the sequence {U;}?_; is observed. In this paper we extend Smith’s results
and study the asymptotic properties of ML type estimators for k and o(&) based on a sequence
{U;}7_, obtained from a first stage nonparametric estimator 7(z) for m(x). The extension is
desirable as many stochastic models of interest, in particular those used in insurance and finance,
exhibit the conditional location-scale structure of equation (1) (see Embrechts, Kluppelberg and
Mikosh (1997)) rather than the simpler formulation treated by Smith.

We have shown that, for the case where F'(x) belongs to the domain of attraction of a Fréchet
distribution, the ML estimator for the parameters of the GPD based on the sequence {UZ}?:l
converge at a parametric rate to a normal distribution when suitably centered. The asymptotic
distribution is similar to that obtained by Smith (1987), but although the use of nonparametric
residuals does not impact the estimator’s rate of convergence, it does increases its variance. We
also study the asymptotic behavior of the estimator ¢(a) constructed from the ML estimators
for the parameters of the GPD. In particular, we show that LZ) —1 also converges in distribution
to a normal at the parametric rate. These results, combined with known properties for suitably
defined 7 (x) provide consistency of Gy|x(a) as an estimator for gy x(a).

Besides the introduction, this paper has four more sections and two appendices. Section 2
provides definitions and discussions of the specific estimators we will consider. Section 3 provides
the asymptotic characterization of our proposed estimators and the assumptions we used in our
results. Section 4 contains a Monte Carlo study that sheds some light on the finite sample
properties of the estimator under study and a comparison with a commonly used estimator
proposed by Hill (1975) for the parameter k of the GPD distribution. Section 5 provides a
conclusion and gives directions for further study. The appendices contain all proofs, supporting
lemmas, tables and figures that summarize the Monte Carlo simulations.

2. Estimation. The estimation procedure has two main stages. First, the definition of U; in
(2) requires a specific estimator for m(x). For algebraic simplicity we will consider the Nadaraya-
Watson (NW) estimator

i=1 ! ( hiin )

2].u.b stands for least upper bound.
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based on a random sample {(Y;, X;)}?; of observations on (Y, X) € R2. Here, K;(:) is a kernel
function satisfying some standard properties (see section 3) and 0 < hq, is a bandwidth.? Tt
should be clear from what follows that other nonparametric estimators for m(z) could be used
to define U;. What is important is that they are uniformly asymptotically close to m(x) in
probability at a suitable rate. In particular, for the the NW estimator we have that under our
assumptions

nhy,\ ~ V2
() suplite) ~ o) =0, ( () ™2,

zeG logn

where GG is any compact subset of R.

Given a sequence {U;};-; we define the (ascending) order statistics {U;)}i_;. For any N <n
we define the excesses over Ug,_ny) by {Zj}évzl = {Upm-n+j) — U(n,N)}é-V:l. In our context, it
should be clear that since U; is not observed, neither is Z;. Order statistics can be viewed as
estimators for a-quantiles associated with empirical distributions. As such, we can write

( ) . U(na) if na e N
) = Ulnaj+1) ifna ¢ N

where IN represents the positive integers, ¢,(a) is the a-quantile associated with the empirical
distribution F,(u) =n"t 3", X{U,<u} With xa denoting the indicator function for the set A.
Consequently, for a, = 1 — % we can write {Zj}j-v:l = {U(n—N+j) —n (an)}j;l. It is well
known from the unconditional distribution and quantile estimation literature (Azzalini (1981),
Falk (1985), Yang (1985), Bowman, Hall and Prvan (1998), Martins-Filho and Yao (2007)) that
smoothing beyond that attained by the empirical distribution can produce significant gains in

finite samples with no impact on asymptotic rates of convergence. Consequently, to construct

an estimated sequence of excesses {Z W j=1, we define ¢(2) as the solution for

F(q(2) = =

where F(u) = [* 1 . ZKQ( )dy, K>(-) is a kernel function and 0 < hg, is a band-

width satisfying certain regulamty conditions. Therefore, we can define the observed sequence
{Zj}j»v:l = {U(n_N+j) — d(an)};vzl to be used in the estimation of the parameters of the GPD
in the second stage.

In the second stage of the estimation we first consider maximum likelihood estimators for o
and k based on the density g(z;0,k) = % (1 — %)1/]{71 associated with the GPD distribution.

In particular, we consider a solution (G, l%) for the following likelihood equations:

01 0
(5) a—aﬁzjllogg Z],O'N,]{?) 0 and %Nzl()gg ZJvUNak)_O'

If {U;}}L; were observed, for a threshold § = U,_x) we could, based on (3), write

(y+U(n n) = FUn-n) | (1_k‘y>1/k
F(Umn-n) oN
3The case where (Y, X) € R!C with X € R and D > 1 can be analyzed with arguments that are similar to

those we have used. The only differences reside on how the kernel function is defined and the speed of convergence
of the relevant bandwidths to zero.

-FU(n N) (y)
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where o has a subscript N to make explicit the fact that it depends on the threshold U,_ ).
Without loss of generality we can write for @ € (0,1) that g(a) = Up—n) + yn,e Where by
construction F'(Ug,—ny + yYN,a) = a. Hence, if 1 — F (U, y)) is estimated by N/n, we have

1 1/k
(6) LY (1 _ ky) ’
N/n oN

k
which suggests yn,o ~ 7 <1 (%) ) The approximation in (6) is the basis for our pro-
posed estimator ¢(a) for g(a),

i
(7) 4(a) = Glan) + Ina = G(an) + U]iv (1 _ ((1—Na)n> ) '

which is given by

Lastly, an estimator for gy x—,(a) is given by Gy|x—z(a) = m(x) + ¢(a). In the next section we
provide asymptotic properties for (5x, k), ¢(a) and Gy |x=z(a).

3. Asymptotic properties of the proposed estimators.

3.1. Preliminaries. We start by discussing some results in Smith (1987) as they are helpful in
understanding our contribution and provide the basis for understanding our strategy for proving
the main theorems. As mentioned above, contrary to our setting where the variables Y and X
are related through a regression model, in Smith (1987) the estimation of g(a) is conducted
under the assumption that the sequence {Zj}iil is observed. As such, he proposes estimators
(6n, k) that satisfy the first order conditions

91 & .
(8) %Nz::logg UN,k)—Oaﬂd%ﬁZlogg 58, k) =0

associated with the likelihood function Ly(o,k) = NZ _1logg(Zj;0,k). Following Smith
(1985) it will be convenient to reparametrize the likelihood function and represent arbitrary
values 0 and k as 0 = on(1 + tén), k = ko + 76n for t,7 € R, dy — 0 as N — o©
and some oy and ko. Hence, we can rewrite the likelihood function Ly(o,k) as Lyn(t,7) =
NZ “1logg(Zj;on(1 + toN), ko + T76N). It is evident that: a) Lyn(0,0) = Ln(on,ko); b)
choosing (6, 12:) such that equation (8) is satisfied is equivalent to choosing t* and 7* that

satisfy
1 8LT N

onNON Ot

Using Taylor’s Theorem, for Aj, A2 € [0, 1], these first order conditions can be expanded around
(0,0) and can be written as

. 1 LN
(t*, 1) = 0and6N 5y

(t*,7%) = 0.

1 0 1 0
L — > S logg(Zisox,
52 i TN (t,T) N 2= 0 log g(Zi; 0N kO)éN
+i§ K (Zsion(1+ SNtA1), ko + SNTA2) ot
N £e gg2 09 I\ 2H ONLE T ONEAL), B0 T ONTA2)TN

1N
+ N ; Taaklogg(zi; oN (14 OntA1), ko + InTA2)onT = I1n + Ion + I3y
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and
19 1 %9 1
—Lrn(t, — )y — (Z k
52 (97' TN T N;@ Ogg iy ON, 0>5N
+12782z (Zi;on (14 OntAL), ko + OnTA2)ont
— 0 o TA9)o
Ni:18k:80 g g\4i; ON NLA1L), Ko NTA2)ON
1 XL 92
T Z wlogg(Zi; on(1+ O0ntA1), ko + OnTA2)T = Iuny + Isn + Isn,
i=1
where the terms I;y for [ = 1,--- ,6 denote the corresponding average in the preceding equality.

Smith (1987) showed that if the class to which F' belongs is restricted to satisfy,
FR1: F € D(®,), that is, F' belongs to the domain of attraction of a Fréchet distribution with
index «a,

FR2: L(z) = 2%(1 — F(x)) satisfies Ii((tw)) =1+ k(t)p(z) + o(p(x)) as = — oo for each t > 0,

where 0 < ¢(z) — 0 as & — oo is regularly varying with index p < 0 and k(t) = C’flt uP~du,
for a constant C,

and its associated density f(-) is strictly positive, then for o = U(,,—n)/a, 0 < a = —1/kg and
ko < 1/2 we have:

0 Co(Ugn
E (awalogg (Z;0n, ko ) =y (i _N))) +0(¢(Un-n)))
0 . OZC¢ (n— N))
( aklogg (Ziow. ko)) =~ T 00U )

(@Ug-n)))

(

E( aaaklogg(z ”N’k0)> = m +0(6Um-n))):

e 4 O(6(Un-) and

5109 9(Z;0n, ko) )

2
N
l (Z, ko)

where all expectations are taken with respect to the unknown distribution FU(% Ny

We note that condition FR1 is equivalent to 1 — F'(x) being regularly varying at oo with index
—a. In addition, by Karamata’s Theorem 1 — F(x) = c(z)exp (— [{ t ta(t)dt) for z > 1 and
for measurable c¢(x), a(x) : (1,00) — R such that lim;_c(x) = ¢ > 0, limg_soa(x) = a > 0
for some ¢, > 0 (Resnick (1987)). In fact, given the density f and if in Karamata’s Theorem

c(x) is a constant when z is sufficiently large, then limg_.o lmfp(()) = «, a result we (and Smith)

use repeatedly. Restricting F' to D(®,) is not entirely arbitrary. If ' € D(¥,), the domain of
attraction of a (reverse) Weibull distribution, then it must be that u, is finite, a restriction
which is not commonly placed on the regression error U. The only other possibility is F' in the
domain of attraction of a Gumbel distribution, F' € D(A). In this case, whenever us is not
finite we have that 1 — F' is rapidly varying, a case we will avoid.

In addition to the expectations listed above, Smith showed that I1y = Op(N_l/Qéjf,l), Iiy =
Op(N~1/25") and provided N/26y — oo and NV/2¢(U(,,—n)) = O(1) we have I1y, Iin = op(1).
Furthermore, Iy = — 195 + op(1), Isn = % +0p(1), Isn = % +0p(1), Ien =

9 p
% + 0p(1) uniformly on Sy = {(t,7) : t* + 72 < 1}. Consequently, %ELTN(L T) =
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¢ <7li—ia> 4T (%)7 %%LTN(@T) LA (%) +7 (—%), which combined

a2

__a o
with the fact that H = — Lo <1+a)2(jj a) is assumed to be positive definite gives

(1+a)(2+a) (1+a)(2+a)

10 ;
9) (¢ T)(jlegig((i:))&(t T)(—H)<i><OOnST.

Using Lemma 5 in Smith (1985) we can then conclude that J%LT ~(t, 7) has, with probability ap-
N

proaching 1, a local maximum (*,7%) on S = {(¢,7) : t>+7% < 1} at which %%LTN(t*, ) =0
N
1 0

gmLTN(t*a 7*) = 0. Put differently, there exists, with probability approaching 1, a local
maximum (6§ = on(1+t*0y), k= ko+71*0n) on S = {(U, k) : H(ﬁ -1, k—ko)l| < 5N} that
satisfy the first order conditions in equation (8). Our first lemma establishes a similar result
for the estimator (G, k) that satisfies the first order condition given in equation (5).* However,
given that we must deal with estimated sequences Z;, additional assumptions are needed.

and

3.2. Assumptions. Asin Smith (1987) we retain FR1, FR2 and the assumption that {U;}
forms an independent and identically distributed sequence of random variables with absolutely
continuous and strictly increasing distribution F' € D(®,,), with a = —1/kg and ko < 1/2. Given
equation (1) and the nonparametric estimation of m and ¢ additional assumptions are needed.
Assumption A1l: The kernel functions K;(z) for ¢ = 1,2 are symmetric, twice continuously
differentiable functions K;(x) : S; — R, where S; are bounded sets. They satisfy |, s, Ki(s)ds=1
and [ sK;(s)ds = 0. [q, s?°K1(s)ds = 0}, < oo and [s'Ky(s)ds = 0 for j = 1,--- ,m where
m > 2. We denote the j* order derivative of K; by KZ-(]) and assume that |K;(u) — K;(v)| <
Clu — v| and \Kz(l)(u) - Ki(l)(v)| < Clu — v| for some constant C' > 0.

The higher order m for K5 is necessary in the proof of Lemma 2. All other assumption
are common in the nonparametric estimation literature and are easily satisfied by a variety of
commonly used kernels.

Assumption A2: The bandwidths 0 < h;, — 0 as n — oo for ¢ = 1, 2. In addition, we assume
that hi, o< n= Y5, hop o n= /510 for § > 0 and ﬁh%‘“ — 0 as n — oo.

The last condition puts a restriction on the relative speed of N and hs, as n — oco. Given the
orders of hi, and ha, it suffices to choose N o n*/®=9. In this case, all orders in A2 are satisfied
and, as needed in Smith (1987), NY/26y — oo and N1/2¢(U(n_N)) =0(1).

Assumption A3: F(u) is absolutely continuous with density 0 < f(u) for all u < us =
lu.b{u: F(u) < 1}. f is m-times continuously differentiable with derivative function satisfying
|£9)(u)| < C for some constant C and j = 1,--- ,m.

The differentiability restrictions on f are necessary in the proof of Lemma 2.

Assumption A4: {(X;,U;)}i=1,... »n is a sequence of independent and identically distributed
random vectors with density equal to that of the vector (X,U) and given by fxy(x,u). We
denote the marginal density of X by fx(z) and the conditional density of U given X by fyx (u).

We assume that E(U|X) =0 and V(U|X) =1 and that fup® a5 4 o

fw)
The requirement that fo'EL ()u) — 1 implies that U and X are asymptotically independent.

Assumption A5: m(x) is twice continuously differentiable at all x € G and fx(z) is continu-
ously differentiable at all z € G, G compact.

Assumption A5 is sufficient for equation (4) to hold but can be relaxed at some cost. It is,
however, standard in the nonparametric literature (Li and Racine (2007), Fan and Yao (2003)).

4||lz|| denotes the Euclidean norm of the vector .
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3.3. Euxistence of 6N and k. We now establish the existence of 6y and k. The strategy of
the proof is to show that the first order conditions associated with the likelihood function

N
LTN(t 7' Zlogg ZJ,UN(1+t5N) k0+T(5N)
] 1

are asymptotically uniformly equivalent in probability to those associated with L7y on the set
St. Formally, we have

Lemma 1 Lett,7 € R, 0 <y — 0, SN2 = 00 as N — 0o and denote arbitrary o and k
by o =on(1+tén) and k = ko + 7dn. We define the log-likelihood function

Lry(t,7) Zlogg (14 tdn), ko + 70N),

where ZJ = U(n N4j) — Glan), an = 1 — %, q(-) and ﬁ(n_N+j) are as defined in section 2.
Given conditions FR1, FR2 and assumptions A1-A5. Then, as n — 0o J%ETN(t,T) has, with
N

pmbabzlzty approaching 1, a local mazimum (t*,7%) on Sy = {(t,7) : t* + 7% < 1} at which
512\, atLTN(t*, *) =0 and 512\] BTLTN(t*’ *) 0.

The vector (t*,7*) implies a value G and k which are solutions for the likelihood equations

1 - B
N;logg(zﬁ‘w”“)—oand%Nzlogg 30N, k) = 0.

Hence, there exists, with probability approaching 1, a local maximum (65 = on(1+t*0n), k=
ko 4+ 7*6n) on Sk = {(0, k) : [|[(7% — 1, k — ko)|| < dn} that satisfy the first order conditions in
equation (5).

The proof depends critically on two auxiliary results. First, there is a need for m to be
uniformly asymptotically close to m at a certain order. Specifically, we need for a compact set
G that g, (an) 'suprec|m(z) — m(z)] = o,(N~/2). This assures that the residuals U; are in
some sense close to the unobserved U;. Second, in Lemma 2 (see appendix) ¢(a,) is shown to
be asymptotically close to ¢,(a,) by satisfying W = Op(N —1/2),

It is important to emphasize that Lemma 1 (as Theorem 3.2 in Smith (1987)) does not
provide a “consistency” result for the ML estimator. In fact, since the distribution Fu,,_y) is
only approximately a GPD, there are no true values for the parameters of the GPD to which &
and k are approaching in probability. What the Lemma does state is that the solutions for the
first order conditions listed in (5) correspond to a local maximum of the likelihood associated

with the GPD in a shrinking neighborhood of the arbitrary point (o, ko).

3.4. Asymptotic normality of ' = (o, l;:) Smith (1987) showed that given conditions FR1,
FR2 and provided {Zj}év:l is an independent and identically distributed sequence from Fy,,

7N)’
N — o0 and ;S NY2¢(U,_ny) — p € R, the local maximum (6, k) of the GPD likelihood

dn (an)

SN _ 1 d w )
A/ o + —
N < /;‘N— ko > - N p(l— ko)ko(l-i-p) , H
1—ko+kop

function, is such that for kg = —é and oy =
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1— ko
-1

sult for the estimators (G, k).

where H = S i — <

1 : - .
(T=2%0) (1=Fg) 9 ).5 Our first theorem provides a similar asymptotic re-

Theorem 1 Suppose FR1, FR2, A1-A5 hold and that Q%)Nl/%s(U(n_N)) — € R. The local

mazimum (Gx, k) of the GPD likelihood function, is such that for ko = —L and oy = W
N _q J H(lzk(])g)(lz%op) . .
/ 7 —ko ¥ ~ -
N ( P ko ) — N wi-kk(itp) | H V2H
1—ko+kop

-1
ko(ko—1)  2k3—2kZ+2ko—1

k2—4ko+2 1
_ (2ko—1)Z Ko(ko—1)
where Vo = ok 2h212k0—1 |-

We note that the use of Zj instead of Z; in the estimation impacts the variance of the
asymptotic distribution. It is easy to verify that H~'VoH~! — H~! is positive definite, implying
an (expected) loss of efficiency that results from estimating U; nonparametrically. However,
any additional bias introduced by the nonparametric estimation is of second order effect as the
asymptotic bias derived in Smith (1987) is precisely the same as the one we obtain in Theorem
1. An important note on the proof is that the fact that Zj is not iid as Z; does not require the
use of a CLT for dependent processes as justified in Lemma 3 in the appendix.

3.5. Asymptotic normality of G(a). The asymptotic distribution of the ML estimators given
in Theorem 1 is the basis for obtaining a normality result for §(a) given in equation (7). The
basic idea is to define, without loss of generality, ¢(a) = ¢(an) + yn,qo for a, =1 — N/n < a and
estimate g(a,) by ¢(a,) and yn,, based on the estimated parameters of the GPD. It is important
to note that, in Theorem 2, as n — oo both a, and a approach 1.

Theorem 2 Suppose FR1, FR2 and assumptions A1-A5 hold. In addition, assume that,
(i) N'2Ch(q(an))/(a — p) — p with ko = —L and on = q(ay)/a and
(i) n(1 — a) o< N. Then, for some zq > 0

q(a) d k(za)ple=p) 1 [ bo
n(l —a) (q(a) — 1) — N ((—ko) <_C —H 1 < b >> ’

k2 <c§,H—1V2H—1cb + 2¢} ( i - ZO ) + 1)) :
— R0

where ¢j = ( kot(z7t = 1) ky2log(za) + ko2 (27t — 1) ), bo = FE (%logg(Zj;aN, k:o)JN> and

a

by =F (%log 9(Zj;on, ko)).

Under the assumptions of Theorems 1 and 2 it is a direct consequence of the linear properties
of limits that for all a € (0,1), ¢y|x—.(a) = M(z) + §(a) Lom(x) + q(a) = qy|x=z(a).

4. Simulations. We conduct a simulation study to implement our parameter estimators

¥ = (6N, k) and quantile estimator §, and compare them with some alternatives available in
the literature. We generate data independently from

Y;zm(Xi)—i-Ui, i=1,---,n

—1

Substituting ko = —a " shows that H is identical to the homonymous matrix in equation (9).
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where X; is distributed as a standard normal. We consider two nonlinear functions for m(-),
mi(z) = 3sin(3z) and mo(x) = 2%. U; is generated independently from a distribution with
density f that is in the domain of attraction of the Fréchet distribution ®, with index a = —1/ky.

The first distribution we considered is the log-gamma distribution, whose density is given by

o = gty
u) = (log(u

ST Ber(a)
It is easy to see that U; is log-gamma distributed for U; > 1 if and only if log(U;) > 0 is
gamma distributed with parameters «, 5 > 0. Furthermore, one can show that E(U;) = (ﬁ)o‘

, foru>1a,08>0.

)

V() = (ﬁ)a - (ﬁ)%‘, and ko = —%. The Log-gamma distribution includes the Pareto
distribution as a special case when a = 1. We specifically let (o, 3) = (1,0.25), and (1,0.5),
which correspond to kg = —4 and —2 respectively. Both the mean and variance of U; exist for

(o, B) = (1,0.25), but the variance does not exist for («, 3) = (1,0.5). U; is demeaned since we
use it as an error term in the regression model.

The second distribution we considered is the student-t distribution with v degrees of freedom.
It can be shown that ky = —%, which is kg = —1/3 for v = 3, and —1/2 for v = 2 respectively.
Here, when v = 2, the variance of U; does not exist. Thus, the distributions we consider allow
ko to take values in a wide range. We expect that the estimation will be relatively more difficult
when the variance does not exist.

Implementation of our estimator requires the choice of bandwidths hy,, and hs,. We select
them using rule-of-thumb bandwidths hy, = 1.25S(X)n_% and hg, = 0.79R(X)n_%, with a
robust estimation for the variability of data as in (2.52) of Pagan and Ullah (1999), where S(X)
and R(X) are the standard deviation and the sample interquartile range of X, respectively.
We choose the second order Epanechnikov kernel for both the estimation of m(x) and the
smoothed sample quantile. The choice of bandwidths satisfies the restrictions imposed to obtain
the asymptotic properties in Theorems 1 and 2. Our assumptions also call for the use of a higher
order kernel in estimating the smoothed sample quantile. Here we investigate the robustness of
our estimator with the popular second order Epanechnikov kernel for its simplicity.

In estimating the parameters, we include our estimator 4, Smith’s estimator 4 = (&N,l%),
which utilizes the true U; available in the simulation, and k" for kg, the estimator proposed by
Hill (1975). Hill’s estimator is designed for data from a heavy-tailed distribution with kg < 0 and
has been studied extensively in the literature (Embrechts, Kluppelberg and Mikosh (1997)). It is
generally the most efficient estimator of k( for sensible choices of IV, though it is generally not the
most efficient nor the most stable quantile estimator (McNeil and Frey (2000)). Since Uj; is un-

A A N N A

known in practice, we use U; = Y; —(x;) to construct k" = —% > (In(Um—n+j) = In(Um—ny))-
j=1

The theoretical properties of k" are unknown and here we investigate its finite sample perfor-

mance relative to the estimator we propose. In estimating the a-quantile, we include our estima-

tor ¢, Smith’s estimator ¢°, Hill type estimator ¢ and empirical quantile estimator ¢°. Following

(6.30) in Embrechts, Kluppelberg and Mikosh (1997), we construct ¢" = U(n_N)(JIV_/fL)kh. q° is

simply the empirical quantile estimator based on {UZ}?zl To give the reader a vivid picture of
them in practice, we provide in Figure 1 a plot of different quantile estimates against different
values of a, where ¢° is omitted for ease of illustration. a ranges from 0.95 to 0.995 because we are
interested in higher order quantiles. The data are generated with m(z) = 3sin(3zx), U; is from
the student-t distribution with v = 2 degree of freedom, and we select n = 1000 and N = 100.
Both § and ¢ are smooth functions of a, while ¢¢ is not. All three estimators seem to capture
the low order quantile well, though differences start to be more noticeable for a approaching
one.

We fix the pairs n = 500 with N = 50, and n = 1000 with N = 100 in our simulation. We
follow this simple choice, because the effective sample size IV in the second stage estimation
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is doubled. We did not explicitly consider the choice of N = O(n~*5) as in our asymptotic
analysis, since our proposed estimator seems to be relatively robust to the choice of N. On the
other hand, the choice of N is critical for ¢”, as its performance deteriorates quickly with N, as
seen in Figures 2 and 3 and in the discussion below. Each experiment is repeated 5000 times.
We summarize the performance of parameter estimators in terms of their mean (M), bias (B)
(in the parameter ko only), and standard deviation (S) in Table 1 for both m(x) = 3sin(3x)
and m(z) = x? with log-gamma distributed U with o = 1 and 3 = 0.25, in Table 2 with a = 1
and § = 0.5, in Tables 3 and 4 with student-t distributed U with v = 3 and v = 2 respectively.
We provide the performance of 0.95,0.99 and 0.995 quantile estimators in terms of the bias (B),
standard deviation (S) and root mean squared error (R) in Tables 5-12. Specifically, results for
log-gamma distributed U with (a, 8) = (1,0.25) and m(x) = 3sin(3z) are detailed in Table 5,
for m(x) = 22 in Table 6, for log-gamma distributed U using (,3) = (1,0.5) in Tables 7 and
8, for student-t distributed U using v = 3 in Tables 9 and 10, for student-t distributed U using
v = 2 in Tables 11 and 12.

In the case of estimating the parameters, we notice that 4 and 4 tend to overestimate kg.
k" carries a positive bias for the log-gamma distributed U, and a negative bias for the student-
t distributed U. As N increases, all estimators’ performance improve, in the sense that their
standard deviation decreases and the bias of estimators of kg is also reduced. This seems to
confirm the asymptotic results in the previous section. As we move from Table 1 to 2 and from
Table 3 to 4, we find that the standard deviation of all estimators increase, and the bias of kg
parameter estimators decreases. We think this is related to the bias and variance trade-off for
the parameter estimation. As we have mentioned above, the variance of U does not exist for
log-gamma distributions with 8 = 0.5 in Table 2 and for student-t distribution with v = 2 in
Table 4. The distribution of U start to exhibit heavier tail behavior, thus more representative
extreme observations have a higher probability to show up in a sample, which explains lower
bias. Among three estimators for ko, k" in general has the best performance in terms of low
bias and standard deviation, with exceptions in bias for the student-t distributed U. The two
estimators 4 and 7 estimate both oy and kg with very similar performances. Relative to 4, ¥
exhibits lower bias in estimating kg, but slightly larger standard deviation in estimating both
parameters. It seems to suggest our proposed estimator 7 is well supported by the NW estimator
for the function m(x).

In the case of estimating the quantile, we notice ¢" carries a negative bias for estimating the
95% quantile, but positive bias for the 99% and 99.5% quantiles. ¢¢ always underestimates the
larger order quantiles. As N increases, all estimators’ performances improve in terms of smaller
bias, standard deviation and root mean squared error. The exception is ¢", whose bias increases
with N. The distribution of U exhibits a heavier tail with 5 = 0.5 (Tables 7 and 8) relative
to 8 = 0.25 (Tables 5 and 6) in the log-gamma distribution, with v = 2 (Tables 11 and 12)
relative to v = 3 (Tables 9 and 10) in the student-t distribution. As we have mentioned above,
the random variable U does not have a variance in these cases. We find it more difficult for all
to estimate the quantiles across all experiment designs, with some exceptions in the bias. As
expected, when we estimate higher order a-quantile, all estimators’ performances deteriorate,
with some exceptions in bias. When we estimate the 95% quantile, which is relatively close
to the center of the distribution, there is no absolute dominance by any one of the methods.
By counting the number of times of being the best estimator across all 16 experiments, ¢° has
smallest bias 9 times, ¢" has the smallest root mean squared error 8 times. The advantage of
the Hill type estimator does not seem to carry through in estimating the higher order-99%, and
99.5% quantiles. ¢ and ¢° are consistently the best with the smallest bias, standard deviation
and root mean squared error, where ¢ seems to have slightly larger bias, but smaller root mean
squared error relative to ¢°. ¢" always carries the largest bias, being better than ¢¢ in terms of
root mean squared error only in the case U is student-t distributed.

The choice of N could be important since the number of residuals exceeding the threshold
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is based on U(n_ ~)- We need to choose large U(n_ ~) to reduce the bias from approximating

the tail distribution with GPD, but we need to keep N large (small U(n, ~)) to control the
variance of parameter estimates. We illustrate the impact from different N’s on the performance
of different estimators for the 99% quantile of U with a simulation, where we set n = 1000,
m(z) = 3sin(3z), and use a student-t distributed U. The bias and root mean squared error
(RMSE) of the estimators ¢*, g, q", and ¢¢ are plotted against N = 20,25, --- , 200 in Figures 2
and 3 respectively. We notice ¢¢ is negatively biased while ¢° and § carry relatively small positive
biases. These three estimators’ biases are fairly stable across N. ¢*’s bias is influenced heavily
by N, being smallest when N ranges from 20 to 60, largest with N greater than 70. The strong
dependence of ¢"’s performance on N also exhibits in RMSE in Figure 2. Between N = 20 and
70, ¢ performs best, but its performance deteriorates quickly when N is larger than 70. As
expected, ¢° and ¢’s RMSE decrease with IV from 20 to 70, but when N is larger than 70, their
RMSE'’s are stable, close to each other, and are smaller than those of ¢ and ¢¢. ¢° and ¢ almost
always dominate ¢, which did not utilize the extreme value theory. The result indicates ¢"’s
performance is sensitive to the choice of IV, requiring a small N to control its bias, while ¢° and
q work well in a broader range of N’s.

5. Summary and conclusions. The estimation of higher order quantiles associated with
the distribution of a random variable Y is of great interest in many applied fields. It is also
common for researchers in these fields to specify regression or location-scale models that relate
Y to a set of covariates X. As such, they are often interested in the estimation of high order
conditional quantiles associated with the conditional distribution of Y given X, i.e, gy |x—5(a) =
m(z) + g(a). The main difficulty in obtaining an estimator for qy|x—, Tests on the fact that the
regression errors which could be used to estimate g(a) are not observed. In this paper we have
expanded the seminal work of Smith (1987), which considered the estimation of g(a) when the
associated random variable is observed, to the case where only regression residuals are available
for the estimation of g(a). Our results are based on a nonparametric estimation of the regression
and a ML estimation of the distribution tail based on a GPD. We provide a full asymptotic
characterization of the ML estimators for the parameters of the GPD and for the estimator ¢(a)
for g(a). It is encouraging to see that the asymptotic normality results of Smith are preserved
albeit with a loss of estimation precision.

It should be emphasized that richer location-scale or regression models than the one we
considered is an important extension of our work. For example, in empirical finance, the evolution
of returns of a financial asset is normally modeled by dynamic location-scale models that require
the estimation of both a regression and a conditional skedastic function. Furthermore, in this
context the independent and identically distributed assumption we used throughout is normally
inadequate. However, we are encouraged that our work has provided a framework in which these
richer stochastic specifications can be studied.

Appendix 1 - Proofs. Throughout the proofs, C' will represent an inconsequential and
arbitrary constant that may take different values in different locations. x4 denotes the indica-
tor function for the set A, P(A) denotes the probability of event A from the probability space
(Q,F,P).

Lemma 1 .

PROOF. Given the results described in section 3.1 and Taylor’s Theorem, for Aj, A2 € [0, 1],
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we have
10 - 1 X5
—Lrn(t — —1 Ziion, k
5, or () N;a 09 9(Zi oo ho) 5
1 X o2
+ =Y —logg(Zs;on(1+ 6ntA1), ko + OnTA2) ot
Nizlf)a
N 2
iZLlO (Zi;on (14 OntA1), ko + OnTA2)onT = Iin + Toy + I
Nizlﬁaﬁkz g g\4i; ON NUAL), Ko NTA2)ONT = 1IN 2N 3N
and
1 0 - 1
——L71N l ZZ, Lk
2 o0 Z 09 9(Zizon, ko) 5
1 0?

N Z ETR 9(Zison (14 OntA1), ko + ONTA2)ont
1 XL 92 -
+t5- Z log 9(Zi;on (1 + Snth1), ko + OnTA)T = Iun + Isn + Ion.

Let a, =1 - N B, = {U; > G(an)}, Bi = {Ui > qn (an)}, Zi = U; — qn(ay) and Z; = U; — G(an)
fori=1,--- ,n. Then, from section 3.1, we have

~ _1 -
I —I = R — k 1_1 _ 1_ o 1_ i
iv — hin 5N( 0 )(N; (( UN) on B on p—_ch
k Z -1 k Zz 1 _
- 72 ( . ) . (XEi - XEL)> = E(ko Y~ 1)(I1p + L12n)

ON

We first study I11,,. By the mean value theorem, for some A € [0,1] and Z} = Z; + )\(ZZ —Z;)
we have

~ 0\ -1 ~
koZ; koZ; ( kOZi)l koZ; ko/on =
. - (7. _ 7.
( ON ) ON XE; oN ON XE; (1 — kto)2XEi( i 2,
oN

and consequently we can write

I =~ 3 gu(a ]WN)QX,; (mm) —m(X)) | d(an) - qn(an)) |

" (1 _ koZ; Qn(an) QTL(an)

ON

From Lemma 2 Z@n)—dn(an) _ = O0,(N~'2). In addition, given that ¢,(a,) — oo as n — oo,

qn(an)
4/5—48 -1/5

equation (4), and provided N x n and hy, x n we have ﬁsumm(:ﬂ) —m(x)| =

n x\ —2
0p(N~1/2). Since oy = —qn(an)ko we have that Iy, < O,(N~Y/?) <1{721(1 - %) XE-)'
1=

Note that Z = Op(1), hence

Zi+ 25

(10) i(l—'“’z*) E—fvi( falZi ool _ o)

ON
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and consequently I11, = Op(N_l/Q). We now consider I19,, which can be written as

1 & koZi\ ~t koZ;
Lon = NZ( - ) - (XE- _XEi) XE;,UE;"

ON

For 01,02 > 0 we define the events A = {w : |U"7%‘ < 51} and B = {w  d(an)—an(an)| 52} and

an(a qn(an)
note that C¢ C A°U B¢, where C' = {w : x5 — x&, = 0}. Hence, xce < xac + x5 and

koZi\ ! koZ; koZi\ ! koZ;
Loy < Z( 0 ) 0 < 0 ) 0
ON ON ON

= I+ I122n.
Since d; > 0 we have Ui=Uil < 1 on A€ and M > 1 on BC. Therefore,

XBCXEqui

01qn (an) 2¢n(an)
1 koZi\ "t koZ; | |U; — Ul
I <= 1- 3 d
i N; ( ON ) 61Qn(an) XEiUEi an
1 koZi\ ™" koZi| |d(an) — gn(an)|
1 < — 1-— > .
2 N; ( oN ) oN ban(an) EUE
Since kg < 0 and oy > 0 we have that (1 — kaoi) k"Z < C. In addition, since_—-— (1 )sup\m( x)—
z€G
m(z)] = 0p(N~Y2) and the fact that Xg,up, limits the number of nonzero terms in the sum
to at most 2N, we have Ii91, < Cop(Nfl/Q). Similarly, by Lemma 2 190, < COP(N*UQ)
and we have Ilgn = Op(N -1/ 2). Combining the orders of Ij, and Iz, we conclude that

Ly —IIy = pye (ko —1)Op(N *1/2). Since, Sy N2 — 00 as n — oo we have I1y — 1y = op(1).
We now turn to establishing that f4N — Iyn = 0p(1). We write

- ~ 0\ -1 -
~ 1 1 & 1 koZ; 1 1 koZ; koZ;
In—1 = —|— lo 1—-—

N 4 oN (le:l ( k‘2 < ON ) k:g ( k:o) ( ON > ON
koZ; 1 1 koZi)_l koZ;

_ lo (1= _

< k3 < oN ) " ko ( ko) ( oN on ) ) VB

1 koZ; 1 1 koZ; -1 koZ;
+ = ——lo (1— )+(1_>( ) N,
N; < K2 on ) ko ko N o | ) (B~ xE)

1
— 57(]41n + I42n)-
N

First, note that

1 1 11 koZ; %a>
Ijn=— (1= =) Iy — —— l —log(1— -
41 ko ( k:0> 11 K2 N; < o9 ( N > o9 ( on ) XE;

Since we have already established that I11, = O,(N~1/2), it suffices to investigate the order of the
second term. By the mean value theorem, Lemma 2 and the fact that ﬁsuphn( x)—m(x)| =

0p(N~1/2) we have

1 & k‘oZz kOZz) 1 —1/2 1 & ( kOZ*>_1
=3 (1og(1- .y - < o (NS (1 B i
N ( % ( oN ) % < oN ) XB, < kgop( )N oN XE;

i=1
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koZ;
oN

n -1
Using the same arguments as in (10), we have % > (1 - ) X5, = Op(1), and consequently
i=1 !

Iy = Op(N_l/Q). By the same arguments used when studying I12,, we have

1 n 1 koZZ 1 1 kOZi)l kOZz |[A]2 . Uz|
I n T ——l 1-— — 1 - — 1— ~
42n < szzl k% Og( ON > + ko < ]{;0> < oN ON 51(]11(@11) XE,UE;
~ 2| aleg (1 —(1——](1- )
+ N; k} 09( oON > + ko ( k;0> < oN oN 52qn(an) XE;UE;

= I421n + La22n,
and provided |——2log (1 - M) + L (1 — i) (1 — M)_1 koZi| — ' we have Iyg1, = 0 (N_l/z)
k2 oN ko ko oN oN n p

and 499, = Op(N*1/2). To verify the bound it is sufficient to show that ‘log (1 — %) <C

-1
— M) koZi| — C from the study of I12,. By the mean value theorem and for some

since ’(1
oN oN

Ai € (0, 1)

<C

ikoZi\ ! —koNiZ;
(1) (_)\ko ) koA

ON

koZ; 1
log (1 — S
og( ON >) Ai

ON
Qrovided Ai is bounded away from zero for all i. Given that I4in, 42, = Op(N -1/ 2) we have
Iyn — Isy = 0p(1), since SNNY2 = 00 as n — oo.

. We now investigate the order of ng — Ion. Consider arbitrary oy = on(1 4+ dntA;) and
k = ko + dnyTA2 and write

.~ 1+ ~ . -1 -
- 1 1 1Y EZ;\ kZ EZ;\ kZ,
In—Iy=—"——[(=2)(-1) = S R A
NN T T ton A2 (( )(k )N; (( z;N> oN ( z;N> O"N)
(L) iy AN AN A AN AN
k N oN TN ON ON
Hence, it suffices to examine
N & o o on on N o o

. -1, ! ' . l
ai kZi 1 Zn kZ; kZ;
~ (1= ER i

1=

for I = 1,2. By the mean value theorem, there exists ZF = Z; + A(Z; — Z;) for A € (0,1) such
that

n N I NG S (X —m(X) e — an(a
Inllzljtz(lkzi) L (@Zi) qn(an)<m<xz) (X:) _ 4(an) — g n>>XEi.

izl ON ON ON Qn(an) Qn(an)

Given Lemma 2 and the fact that g, (a,) " sup|im(z) — m(z)| = 0,(N"1/2) we can write
z€G
. -1 -1
I & kZ} k (kZ}
< —-1/2y " - i e i
L < 0N 53 (1 &N) N (m) nan)

=1
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()

Since qn(an) = —on/ko we have
. —-1 -1
1 « kZ*¥ k (kZF
SUp— 1-— . — n\0n
vl (5) A (o) e

X5, =

: ST ZXE

—1-1
Z*
<1 N k ) ‘
ON

Now, given that dy — 0 we have for N sufficiently large sup‘ k o

aZ)‘ = 0p(1) uniformly (from equation (4) and Lemma 2) gives

N N S |
k:Z . kZ;
ON oN
and consequently Ip,;; = Op(N -1/ 2) uniformly in S7. Now, as we have argued previously, we can
write
K2\ (k2 Ckz\ 7 (k2
oN oN ON ON

= Lo + Lo
: AN
0;—Us| 1< k2, kz;
51(1n(an)inUEi and Ipzz < N-Zl ON oN
1=

combined with 12 o

sup <C

St

n

1
‘Inl2| S NZ

=1

XBCXE»L'UEZ‘

n
1
where Inio1 < 22 X
1=

> | (1-52) 7 (%)
|G(an)—gn(an)|

Ssantan) XE,UE:" Given that 6y — 0 we have for N sufficiently large that k& < 0, 65 > 0

kZ; kZ;
and’<1_éw> (C'TN)
op(N ~1/2) and the fact that x 7,0, limits the number of nonzero terms in the sum to at most

2N, we have Io1 < Cop(N ~1/2). Similarly, by Lemma 2 I,50 < C O (N 1/2) and we have
I = Op(N™ 1/2) Combining the orders of I,y and I,z we conclude that Ly — Ly = op(1)
uniformly on S7. Now, note that IgN I3y = I5N Iy and

. 1 11 iz;\ " kz; iz \ " kz;
I3N_IBN_MMNJZ_:1(_I%:2(<1_M> o o) e
YE AR AN N AR AN
k \k ON ON ON oN
P AN AN AN
k \k ON ON oN oN

and using the same arguments as in the case of Ioy — oy we have I3y — I3y = op(1) and
Isy — Isn = 0p(1) uniformly on St. Lastly, we investigate the order of Ign — Igy which can be

< C. In addition, as argued above, since msup\mm) —m(z)| =
e
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written as

. 1L (2 k2, k2
ov—tov = (F (1 (152 - (1 52))

: 1) (1)
(05 (- (-2 ()

2 1 kZ; kZ;
(12) =N (log (1 — UN) lo (1 — JNJ>> + 0p(1) uniformly in Sr.

Jj=1

The last equality follows form the arguments used above when investigating the order of Iy —
Iyn. The first term in equation (12) can be written as (excluding the constant 2/k?)

1 Z kZ; kZ
(13) NZ <log ( ) — log ( . )) Zlog ( ) (X5, — XE,)-
Using the mean value theorem, Lemma 2 and ﬁsup]m( z) —m(z)| = 0,(N~'/?) we have
z€G
R A
z": _kz ok
—1 on

- (opuv*/?) + opuv*l/?)) Op(1) = 0,(1)

><

XE,

uniformly in St using the same arguments given above. Lastly, the second term in (13) can be

written as
*Zlog ( ki) (X5, — XE)XE,uE, < Jbg log (1 - ](i]ZVZ) XAX 0B
+ Jifg log (1 - ]:;]ZVZ> XBeXE,UE;
+ ]1[22 log (1 - Z) M(agjq;(f;()a")' BUE,

As argued above, given that §iy — 0 as N — oo there exists N sufficiently large such that k<o,

on > 0 and we have that ‘log (1 — %) < C as in equation (11). In addition, by Lemma 2,

mjgg]m(x) —m(z)| = 0p(N"1/2) and the fact that Xg,up, limits the number of nonzero

ON

. . iz,
terms in the sum to at most 2N, we have that %leog (1 — —) (XE _XEi)XEqu,. =o0,(1). O
1=
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Lemma 2 Under assumptions A1-A5 and conditions FR1 and FR2 we have

N2 (d(an; (—aq; (an)> = 0p(1), where a, =1 — Y.

Proor. We write

80 () ()

We first show that T, converges in distribution, which implies T5, = O,(1). Note that

nko nko

——=(F(Yn) — an) < —=(Fn(Yn) — F(yn

D P () — a0) < T2 (P ) = ) )

with y, = q(an) + zo, and o, = q\(/ai) By the mean value theorem, F(y,) = a, + f(¢*(ap))onz
where ¢*(an) = q(an) + Aoz = q(ay)(1 + AzN~1/2) for some A € [0, 1]. Thus,

nk _ nk * _ . (1= F(q"(an)))n q(an) f(q" (an))
e Flm) = an) = SE (4" (an)a(an)z = ho——; ()

P(Ty < 2) = p(

Since ¢*(an) = q(an)(1 + o(1)) we have that lim w = 1. In addition, by Proposition

1.15 in Resnick (1987) lim % = —7,> hence lim %(F(yn) an) = —z. We now show
that ﬁ(Fn(yn) — F(yn)) <, N(0,1). First, we observe that ﬁ - W = o(1), hence we
show that
n(l = F(yn)) ~, d
14 Folyn) — Fyn)) =S Zin % N(0,1
(14) L (Falo) ~ Flam) = 37 NO.1)

where Z;, = % AU <yn} — E(x{U; < yn)}). It is readily verified that F(Z;,) =0

and V(Zi,) = n~'F(y,). Hence, given that " F(|Zi|?) < 2(n(1 — F(y,)))~Y? = o(1) we have
i=1

by Liapounov’s CLT that 2 (Fu(yn) — F(ya)) % N(0,1). Hence, Tz, <> N(0, k3).

We now show that 71, = O,(1) by establishing that 77, converges in distribution. As above,

(15) P(Tip < 2) = P (”’“O (Flyn) — an) < X2 (F(y,) - Fun)).

VN VN

and we establish that ﬁ(ﬁ’(yn) —F(yn)) 4, N(0,1). We start by noting that for some A € [0, 1]

o = [l () [ Ol

QnZ 1

2/ h3 ZK2 <?J U*>d(U U)? = Qin + Qan + Q3.

2n

where U = AU; 4 (1 — A\)U;. Therefore,

%(F@n) — Flyn)) = Jiﬁ (Qin — F(y)) + Qan + Qan) -
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We first examine Qs,,. Given (4) and the fact that K§2) is symmetric (A1) we have that

1 yn_Ui*
Ké)( ha )‘

Using Taylor’s Theorem we can write for some A € [0,1] and U* = A\U; + (1 — A\)U;" that
M M)’ < Lk (y”_ )‘ <_Uz**> Ur — U
2 ( han - nhgng 2 hon, nh2 Z Ron ( i l) .

1 2n =1
Provided that |K21 (x )| < C on the bounded support Sz (Al) and given that f(y,) — 0 as
n — oo we have —— Z ‘K(l) ( ) = 0p(1). Given that U — U; = A(m(X;) — m(X;)) and

o () g

(”hln) 1/2+h2
o . Hence, this term is bounded in probability if “"”LTHI" = 0(1),

>

=1

Q3n < Oy (<

h2n nh2n

Tl

nh2n =

(4) we have —-3° |K(? (V) Uy = U

2n4—1

(”hln )_1/2+h2

logn

Op

which follows if hi, = O(hg,) and nhi,hj, = O(logn). These orders are satisfied by taking
hin o< n~ Y% and ha, o« n=/5%9 for § > 0. Hence, under these conditions

" o ((7;;1;)—1/2 + h%n>2

\/N b h2n

n Qsn = = 0p(1), provided N o n?/579.

(16) Ve

n

Qo = %Z %Kg (y’;mg’) (m(X;) —m(X;)), and using the fact that

. 1 " Xi—z\ e nhi,\ VY2, 2
) =) = @) ;Kl ( hin ) Y= (((logn) " hl”)

uniformly over a compact set G, with Y;* = m® (2)(X; — z) + 3m® (2*)(X; — 2)2, 2% = \X; —
(1 — Xz and A € [0,1], we can write

" V) L (K X0 0

—K Xi)(Xe — X;
n? ;g anX ) ( hop hin ! hin " ( )( ! )
1 K& n — U; 1 Xt—Xi> 1 9
— — K [ ) @ (X) (X — X)?
TL g; anX ) ( han )hln 1( hin 2 ( t)( ! )

2

LS~y o= Ui\ 1 (X=X nhi\ 72
— K —K h
’fl ;g anX 2( h2n )hln 1( hln >Ut+0p (<<109n> Mn

nhy,\ V2 2
= Q21n + Q221 + Q231 + O)p (((l ! > +h%n> .
ogn

We will obtain the order of each @9, for j = 1,2, 3 separately. Let

1 —U; X: — X,
o(Zis Z0) = K K ,
Unl 2 [x(Xi)hap 2 ( han ) hip ( hin > Ue
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for Z; = (X;,Uy) and write Qun = gix 3 32 (Va2 Z) + (£ 24)) = gz - ¥.00(Z. Z)

where gf)n(Zt, Z) is a symmetric functlon The partial sum for the case where ¢ = t is denoted

by Qbs,, = ngh%hln Z fx ( ) U;, and given that fU‘f(() N 1 as u — oo, Proposition

1.15 in Resnick (1987) and %(_h%”u) — 1 as n — oo, we have by Lebesgue’s dominated
convergence theorem that \/NQQ?W = 0p(1). For the case where i # t we write the remaining

partial sums as

b3 = ZE n(Zs, Zi)| Zt) — %E(¢n(ztazi)) + Op <”_1(E(¢%(Zt,Zz’)))1/2)

t 1

Given that E(U;|X;) = 0, we have E(¢,(Z, Z;)) = 0 and

1 1 (X - X 1 yn_Ui> > Ly
E(¢n(Z4, 2)|2) = ~ X B P\ hy, )R VT 2 A
(0n(Zt, Zi)| Zt) Z ( (X,) hin 1( hin )h2n 2( hon )10V ”; t

n

with E(Z,) = 0. As above, using A4, Proposition 1.15 in Resnick (1987) and Lebesgue’s domi-
nated convergence theorem we have that £ (%thn) — —ky 1. Using similar arguments we have

1/2
n~ E (¢2(Z, Zi))l/2 =0 (nl (¢) / ) Consequently,

nynhln h2n

T (8 (07020 "") =00 (i) ) = (b)) =00

n
since vy, — 0o and nhi,ho, — 00. Hence, we can write that ﬁ\/yn 93n = %2 Zinr/Yn+o0p (1).
Since E(Zy/Yn) = 0 and E ("2 Z%) — —ky', by Liapounov’s CLT we have \/—N,/ynQ%n <,
N(0, —ky'), and since /g, — 00 as n — oo we have that #Q’Q’gn = op(1).
Using similar arguments and manipulations we obtain \/nfﬁsz = 0p (h%n N ) + 0p (1) and

\/”—NQQ% =0p (h%n\/ﬁ) + 0, (1). Hence, combining the orders for Q21y, Q22 and Q23, we have

n —o, (K2 VN 0 nhiy ) 72 h? 2
WQ%—%( In )+0p(1)+ﬁ : <<logn) ! 1n> |

Given that hi, o< n=Y/5 and hay, oc n=Y549 for § > 0 and N o n?/579, %Q% = o0p(1).
We now show that (an — F(yn)) 4, N(0,1). First, we put qi, = 7— [Y" K> ( o )dy

(17)

Ram J—
and write
n n L 1

e n - n - E n E n) F n

- Iln + IQn-

1 _ 1 . _ s2

Clearly, F (n(lF(yn)) (q1n — E(Chn))) =0and V (n(lF(yn)) (q1n E(Qm))) = n(A—F(yn))
where

= [t () o (f e (M) P

h2n h2n “ h2n 2 h2n we

and b(x) = 25(x) 7. Ka(y)dy. Define * = F(y,)(1— F(y,)) and write g = (55 4

F(yy). Since, % = o(hg,) and F(y,) — 1 as n — oo we have % — 1. By Liapounov’s
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CLT, I, % N(0,1) provided that E(|Zin|*) — 0 as n — oo, where

1 1 Yn y—U; 1 Yn y—U;
e i L (o G [0 (52
n(l — F(yn)) <h2n oo 2\ hag hon J—se ™ 2\ han Y
The condition is verified by noting that
1 Yn y—U; 1 Yn - U;
— K dy— FE K d <2
’<h2n [m 2 < h2n ) <h2n [m ? < h2n ) y))‘ o

since h 7 ( . )dy < 1. Consequently, |Z;| < TG0 and

2 s2

n(1— F(yn)) n(l — F(yn))

— 0asn — oo.

E(|Zinl) <
Integrating by parts we have

m-— 1 h2¢]+1

’E(QIn) - F(yn)| = ‘/(_h2n)¢K2 y” + Z ] + 1

Jj=1

) _ m+1
J)(?/n) + (Chan)

Wf(m)(y;)W/J )

where 3 = A(yn — hant)) + (1 — Ny, for some A € [0,1]. Since K is an m'"-order kernel and
m+1

]f(m)(u)| < C, we have that |E (¢1n) — F(yn)| < (:211)! [ Ky (y)|dy = O(hmH) Hence,

I, =0 (\/"—Nhg}fl) = o(1) and

n d
18 L Qun = Flyn)) % N(0,1).
) T Qun = Flun)) 4 N O
Equations (16), (17), and (18) show that \/"—N(ﬁ'(yn) — F(yn)) <, N(0,1), and by consequence
T, = Op(1) which completes the proof. O

Theorem 1

PROOF. Let 7'y = ”N =1+ 6nt*, k = ko + n7 and note that

1 0 *
(19) gty 1 (3 iclog(ZysTvon )\ _ (0
%%LTN(H:T*) ONN 1 Zplog g(Zy;inon, k) 0
For some A1, A2 € [0,1] let k£* = Xoko + (1 — )‘2)%7 ry =AM+ (1= M),

HN TN,k*

; :
a,ﬂf,wz()gm STNONEY)  giplog 9(Zj o, k)

) 5
1 i( 5, logg(Zg,rNaN,k*) 3;§TNZOQQ(ZJ'Q7"7VUNJ€*) ) and
j:l

1 N

log g(Zj; o, ko) Sn(Iiy — Iin) + On 1w
1, ko) = \/N N ] 1 arN _ \/N L :
UN( 0) ( N ZJ 1 6klogg( JvaO) 6N(I4N - I4N) +5NI4N

where I 1N, Lin, f4 N, I4n are as defined in Lemma 1. By a Taylor’s expansion of the first order
condition in (19) around (1, ky) we have

(20) HN(ryv,k*)\/N< EN—_k; ) — o (1, ko).
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We start by investing the asymptotic properties of vy (1, kp). Let

G G ) ot o
2+« 2+« 14+«

and observe that from Lemma 2 and the fact that q”((“") — 1 = 0p(1) we have that

an)

Lk = bl\/Niq(a")zq")(a" + 0NV NIin + 0y(1)
N( ) 0)

bz\ﬁq(az (;]n an) —|—5N\FI4N+OP(1)

[ YN (L) nlan)=dlan)) g Gy /N Ty + 0,(1)
by VN (1 an) 3)( + 0NV NIy + 0y(1)

an) _ 4n(an)=q(an)
q(a
By Lemma 3 and the fact that Ny — N = O,(N'/?)

q(an)
( VNN TN > - ( bl\/ﬁer e SN flog g(Z; on, ko)o + 0p(1) )

VNoNIin by /N lte)alen) 4 o 57 lakloggw;-;amkowop(l)

where Z; = U; — q(ayn) for U; > q(ay). Hence, letting b, = F (%logg(ZJ’-;aN,kg)oN) and
by =F (%log 9(Z};on, ko)) we have

bV N AT 4 o % log g(Z}; 0N, ko)on — by ) + 0p(1
UN(Lko)—\/N(ZU): ! aan )q(an) ml(zg 155109 9( ,N 0)ON ) (1) |
g by /N L) q(a + 75 ( j=1 aklogg(zj;oNakO) — bk) +0p(1)

Note that we can write
L (-0 l ko) b, N2 l Z'onk b
i ]Zlc‘)a 09 9(Z}; 0N, ko)on — Z 09 9(Zj;0n,k0)oN = bo | X{Ui>q(an)}

= ZZil
i=1

and

N n
0 0
(Z R logg(Z;0n, ko)on — bk:) =Y N"12 (aklog 9(Zj;0n, ko)on — bk) X{U;>q(an)}
= i=1

n
= ZZm-
i=1

ﬂ\

Also, from Lemma 2 we have that v N % is distributed asymptotically as Z (—ko)(n(1—

F(yn))) ™ (a1 = Bqin)) +0y(1) = 32 Zis + 0p(1) where qin = g, [%5 Ko (42 ) dy and y, =

q(an)(1+ N~=122) for arbitrary z. It can be easily verified that E(Z;;) = E(Ziz) = E(Zi3) = 0.
In addition,

V(Za) = N (52

ON

2
logg(Z]’-; ON, ko)UN — bg> P({UZ > q(an)})

s, 2 1
— 1 R ’. —_ = -1
=n E <8 logg(Z],aN,kg)aN bg> n <1 T + o(l))

ON
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where the last equality follows from Smith (1987). Using similar arguments we obtain

V(Zin) =n" 207 1
R T TCE A

and from Lemma 2 we have that V(Z;3) = n k3 F(y,) + o(ha,). We now define the vec-
n n
tor v, = Z(Zil,ZiQ,Zig)/ and for arbitrary 0 # A € R% we consider Ny, = 3. (M Z; +

i=1 =1

n
XoZio + A3Zi3) = Y. Zin. From above, we have that F(Z;,) =0 and V(Z;,,) = 213:1 )\ZE(Zfd) +

=1
2 1<acar<s M e E(ZigZiqr ). First, we consider F(Z; Z;2) which can be written as

1 N

E(ZinZip) = —Tin — —5boby
n n

. Co(U,,_
where T, = F (%log g(ZJ’-; oN, kO)UN%log g(ZJ’.; oON, k:o)). Since b, = %_;\[))A-O(QS(U(TL_N)))

Cap(Ug,,—
and by = —% + 0(¢(Ugn—ny))) we have that
1 N1/2 U 2 1
E(ZnZip) = —Tin — O <( A 2( M) = —T1, —n20(1)
n n n

since N1/2¢(U(n,N)) = O(1). Now, note that
1 /1 2 koZ!\ 2 (koZ!\?
E(Tyw)=-b,——|——-1) E((1—- i i
(Tir) g ko (ko > <( oON ) < oN )
/ 7\ —1 /
_12(1—1>E<l0g (1—kOZi> <1—k°Zi> (koz)>
kg \ ko ON ON ON

. koZ!\ "2 [(koZ!\2
From Smith (1987) we have that E ((1 - L) (L) ) = m + O(¢(Ugn—ny)) and

ON ON

by = O(¢(Un—ny))- From Lemma 4 we have that

51 ) (15 (52)) - L g oty

which combined with the orders obtained for the other components of the expectation and the
fact that kg = —a~! give

1

E(ZinZiz) = " ko — 1)(2kg — 1)

1 _
+ 20U x)O(1) ~ On~?)
We now turn to E(Z;1Z;3) which can be written as

_ 0 _
E(ZiZiz) =Top — E (N 1/2 (Mlog 9(Zj;0on, k‘o)UN) XUi>q(an)> E(qin)(n(1 — F(yn))) /2,

where Ty, = E (N2 (52-10g g(Z}; 0, k0)on ) X7,>g(a,) (1 = F(yn)))"?q15) . We note that

0
—1/2
E <N <3UN

from Lemma 2 E(q1,) = F(yn)+O(h5:t) = O(1) and since (n(1—F(y,)))~/? is asymptotically
equivalent to N~1/2, the second term in the covariance expression is of order

VN _ _
—O0(3(Un-m)))O(N 2 = n 7 O((Un—n)).

n

log g(Zj; 0N, ko)UN) X{Ui>q(an)}) 7ba = 7O(¢(U(an)))a
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1/2 ;

We now turn to Th,, the first term in the covariance expression. Since (n(l — F(y,)))™ /< is

asymptotically equivalent to N~1/2, we have by the Cauchy-Schwartz inequality
_! 0 l VAT k
Top = ﬁE don 0g 9( 3 ON, 0)ONGIn
<317 G,
n don
1 B 2 12
/. 2 -1
<. (E <<80N5099(Zj70N,k0)0N> ) E(Qm)) =n""o(1).

Hence, E(Z;1 Z;3) = o(n~1). In a similar manner we obtain E(Z;2Z;3) = o(n~!). Hence, nV (Z;,) =
NViA +o(1), where

logg(Zj;on, k‘o)UN(hn)

1 -1 9
=2 (Fo=T)(2Fo 1)
1= T oD (2ko=1)  (ko=1D)(2ko—1)
0 0 k2
By Liapounov’s CLT EZm N(0,NVi)) provided that > E(|Zin|?) — 0. To verify this
i=1
condition, it suffices to show that
(1) > _E(1Zu|*) — 0; (i) Y E(|Zia|*) — 0; (iii) Y E(|Zis|*) — 0
i=1 i=1 i=1

(7i1) was verified in Lemma 2, so we focus on (i) and (ii).
For (i), note that ZE(|Z11| ) < V%E (|(1/k‘0 —1)(1 —koZ!)on) ko Z! Jon — 1|3) — 0 pro-
vided E(—(1 — koZ’/aN) 3(koZ!/on)?) < C, which is easily verified by noting that
—(1- kQZZ{/O'N)_3(koz£/UN)3 <—(1- koZé/UN)_:S(l — k‘oZ{/O’N)3 =1.

Lastly,

" 1 Z! 1 1 zZN" oz
E(|Zy®) < —=E m( k>+<1—><1—k> ko—~ 0
; (12 )_\/N (‘ k3 ! ’ ko ko Yon Oon| |

provided E (log(1 — koZ!/on)3) < C give the bound we obtained in case (i). By FR2 and
integrating by parts we have

) 2 \3
E (zog(1 - kozg/aN)?’) - —/0 log (1 - koo_N) dFy,, )
- F(U(n—N)(1 + U(nz N ) z

= - — log(1 +
1 - FUq- N)) (log(

oo L(U(n—N)(l + U, )) z z
+/ =N (1 + “*3(log(1 +
L(Un-ny) ( Un—n) )73ty Utn—n)

)_1(1/U(n_N))dZ =T + Top.

3|0
el

)

z
x (1+
Un—
Three repeated applications of L’'Hopital’s rule and Proposition 1.15 in Resnick (1987) gives
T, = 0. For T5, we have that given FR2 and again integrating by parts and letting t =
1+ Z/ U(n—N )

o

Ton = /1w3<log<t>>2t—a—1dt+¢<U<n_N>> /1 3<zOg(t>>2t‘a‘lf<tp—1>dt+o<¢<U<n_N>>>-
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It is easy to verify that [ 3(log(t N2 ldt = % and consequently T, = % + O(@(Un-ny))

which verifies (i7). By the Cramer-Wold theorem we have that 1), <4 N (0, V1). Consequently,

for any vector v € R? we have +/ <UN(O'N, ko) — VN < Z" >> — N(0,7'Va7y) where
k

k2 —4ko+2 _ 1
o (2ko—1)2 ko(ko—1)
Vo= 1 2k3 —2k2+2ko—1 :

" ko(ko—1)  E2(ko—1)2(2ko—1)

bo

Again, by the Cramer-Wold theorem (’UN(O'N,]{J(]) - \/N( b
k

>> LA N(0,V3). Hence, given

equation (20), provided that Hy (o}, k*) L. H we have

m( %N__k; ) — g1 N< ZZ ) =g <UN(O'N,/€()) - JN( z‘; >> SN (0, B WRHT).

To see that Hy(ok, k*) 2 H, first observe that whenever (¢, 7) € S we have (7y, k) € Sk and
consequently (3, k*) € Sg. In addition, from Lemma 1 and the results from Smith (1987) we

have Hy (ry, k) & —H uniformly on Sk. By Theorem 21.6 in Davidson (1994) we conclude that
* x\ P
Hy(o%, k) & H. O

Lemma 3 Leta, =1— H and for j =1,--- N define Z; = U; — qn(an) whenever U; > qn(an)
and for j =1,---, Ny define Z; = U; — q(an) whenever Uj > q(ay). If

19 19 ,
Ao NZQ*OQQ ZwUN,ko)UN—*Z 95 1099(Zj 0N, ko)o

and
A = igjﬁz (Zjs 0w, ko) Z 0 1og g(Z; o ko)
k_szlak 0949 5ON, 0 ok 0gg 3ONs R0 ),
then N'2A, = blﬁ% +0p(1) and N2y = bg\/ﬁ% + 0p(1), where by =
a(l+a a?(14+a a3
—ta b= (- ).

PROOF. We first consider the case where N = Nj. Then,

1 o 9
A, = NZ(logg(ZJ,JN,k:o) N*KZOQQ( UNakO)UN>

N _ —1
LS () (<1ﬂmzj> (1) M)
N: ON ON ON ON

By the mean value theorem, there exists A € [0,1] and Z} = Z} + A(q(an) — gn(an)) such that

- mle) e (L) L (o gy

Q(an) )

P

(21)
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Again, using the mean value theorem, we have that for some ¢ € [0,1] there is Z;* = 67} + (1 -
0)Z7 = Z; + M1 — 0)(q(an) — qn(an)) such that

so((-m) (- ma) ) =S N

ON

- el 0 (1 )
= 0,(N —1/2)( (1+0,(1 ﬁ:( Z**) -3

where the last equality follows from the fact that q(? ”)) =1+ 0p(1) and Lemma 2. In addition,

(b o S (- B ) - e

ON
1 Y k -3
== 3 (1 - iz} + op(1)) = 0,(1)

using the same arguments as in the proof of Lemma 1. Hence,

VEC-Ra)" - onme i g me)’

— o 2C¢(U(n—N)) B
T 2ra Cra)@+a—p " o(¢(Ugn—ny))) + Op(N~1/2)

where the last equality follows from Smith (1987). Consequently, since ¢(U(,—n)) = O(N —1/2)

and substituting back in equation (21) we have that N/2A, = by N1/22lan)=a(an) 4 (1)
qa(an) P
We now turn to the case where N7 > N. In this case we can write

1 X /0 )
NY2A, = NWN > ((%logg(Zj;aN, ko)on — 5-logg(Zj;on, k‘o)UN>

i=1
1/2 1 Y 0 /
+N N Z %ZOQQ(ZJGUN,/%)UN
i=1

The first term is b1N1/2%:3(a") +0p(1) as in the case where N = Nj. As in Smith (1987) we

have that the expectation of the second term is le/_ﬁN (C(z)l(fg’:;v)) + 0o(¢(Ugp— N)))) which is o, (1)

since ¢(Ug,—n)) = O(N~Y/2) and NlT—NN = Op(1). In addition its variance is YN O(1) = 0,(1).
Hence, the last term is o,(1), and we can write for the case where N; > N that N2A, =

b1N1/2% +0p(1). Similar arguments give us the same order for N'/2A, when N > Nj.

The case for NY/2Ay, follows, mutatis mutandis , using exactly the same arguments. O

Lemma 4 (log (1-2Z) (1-22)™ (’“OZ)> )

ON ON ON

PROOF. We first observe that from the results in Smith (1987)

oo - 2) " (52)) = st

koZ! koZ!\ !
+ E<log<1— 0 Z)(1— 0 1) >
ON ON




26 MARTINS-FILHO ET AL.

Using the notation for L(-) in FR2 and given that

L((1+U(nZ_N))U(n7N)) <1+ 2 >_a
)

Fy =1-
(n= N)( ) U(n—N

we can write E (log (1 - kgoi{) (1 — M)‘l) = [s" log (1 - %\f) (1 — @)71 dFy,_y, (2). In-

ON

tegrating by parts we have

li-42) (- 52) ) [ )

ON oN 0 LUpn-ny)

g (U(nl_N) (1 + Z/U(”_N))_2

" log (14 2/Upn—n)) (1+ 2/Un-n)) ‘2> de.

Setting t = 1 + 2/U(,,—n) we have that

koZ! koZ! L(tU,—
E (log (1 _ 2 Z) (1 0 ) ) / ) (t*“*2 —log(t)t~ > %)dt
oN L(Un—ny)

and by FR2

koZ, koZ!\ ! o0
E (log (1 S Z) (1 - ’) ) :/ (t7272 —log(t)t=>2)dt
ON ON 1

o] t
+ COUnn) / (2 — log(t)t=2) / W\ dudt
1 1
11
at+1l (1+a«)?

+ 0(¢(U(an)) = + O((ZS(U(an))

which combines with the order of the first equation in the proof to give the desired result. [
Theorem 2 .

PROOF. Let a € (0,1) and a,, = 1 — & < a. We are interested in estimating g(a) which we
write as ¢(a) = q(an) + yn,q. Estimating ¢(a,) by ¢(ay,) and based on the GPD approximation

- k
we define an estimator yn, for yn, as yne = Ué\’ (1 — (W) > Note that, as defined, yn

satisfies

~ 1/k
_ A N N
(22) 1= F(dan) + Gva) = (1 - yN) |
n ON

Let us pause and note that for a chosen N, equation (22) is satisfied with a distribution function
F that is not necessarily F. However, given the continuity of F, there exists N satisfying the
order relation a > 1 — N/n for which (22) is satisfied by F. Hence, to avoid additional notation
we proceed with F. We define the estimator for g(a) as ¢(a) = §(an) +9n.q- For 0, = q(a)(n(1—
a))~Y2, arbitrary 0 < z and V,, = —ko/n/(1 — a)'/? we note that

P(Un(d(a) - Q(a)) < Z) = P(l —a>1- F(Q(an) + YN,a + Unz)
=P(Vo(1—a)— (1—F(qla) +opz)) > Vu((1 — F(q(an) + YN + onz2))
— (1= F(q(a) + opn2))).
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In addition, from the proof of Lemma 2 we have that lim,.cVa((1 —a) — (1 — F(q(a) +
onz) = z. Now, let W, = V,((1 — F(q(an) + yna + on2)) — (1 — F(g(a) + 0n2)) and note

that U WO, = \/n(T = F(q(@) (opagrezs —1) = == Wa(l + o(1)). We first

establish that

1—F(q(a) + onz)

n(l = F(q(a))) ( - 1>

1—F(q(a) + on2)

is asymptotically normally distributed. Without loss of generality consider yn = g(a,)(Zn — 1)
for 0 < Zy — 2z, < oo. Note that if Zy = z,, then yy, = ynv = ¢(an)(z, — 1). Then,
q(a) + onz = q(an)za(1 + 2((1 — a)n)~/?) = g(an) Zn. By FR2

(q(an)ZN)* 1 = F(q(an)ZN) _ ,—1/k1 = Fla(an)Zn) _
a(an)° 1= Flg(an) 2N = Flq(an) since a = —1/ko
=1+ k(Zn)¢(q(an)) + o(d(q(an)))
where 0 < ¢(g(an)) — 0 as g(an) — 00, k(Zn) = @. Since we assume that N2Co(a(an) _,

a—p
i, we have that as Zny — z4, k(Zn)o(q(an)) — k(za)Nfl/Qw — 0 and consequently

vk 1 — F(g(an) Zy)
(23) N Fglan)

=1+ k(z)NW“(aC_’)) +o(N~1/2),

We observe that for the function h(o, k,y) = —4log (1 - %y) we can write

I_F(Q(an)"i'yN)_ ~ 7.
)

and using the notation in Theorem 1 and the mean value theorem gives

- -1
h(UNak7yN) _h(UN;k(]ayN) = ( O-N%h(o-}k\[ak*ay]\/) %h(a}k\hk*ay]\f) ) ( l’;:N_ kO )

for 0% = Man + (1 — Aoy and k§ = Aoky + (1 — A2)ko and Ay, Ao € [0,1]. Tt follows from

on = —kogq(ay,) = —% that yy = % and from Theorem 1 we have
0 0
NG h(oh KT yn) 5 =g (25t = 1) and —-h(ofe, kY un) = kg log(za) + ko (7" = 1).
o
Hence, if ¢ = ( —ko Mzt = 1) kyllog(za) + kg2 (25t — 1) ) and
r_ ( u(1—ko)(1+2kp)  p(1—ko)ko(1+p) )
Hp T—ko+kop T—ko+kop
we can write
(24)
ry —1 _ _ .7
Cé”( /;N_ ko ) L N (cyppy bH WVaH ) and VN (WG, &, yn) — h(on, ko, yn)) = Op(1).

Now, we can conveniently write,

L — F(q(an) +yn) _ 1= F(qlan) +yn) 11— F(q(an))

1/ko —1/ko
1— F(q(an) — yn) 1— F(G(an)) T~ Flglan) +un) N N
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1= Flglan)tyn) _ (1 Fan )% (1=Fla(an)
Note that P laan) —(1 6;;) (1 Fi(a ))) and

- k —l/ko
ZNl/ko _ (1 _ (Oyg]/VN) = exp(h(on, ko, yn))-
F

Furthermore from equation (23), Z}V/ko(l_l;ﬁ(q((% —1=N"1/2 (—k(z)M) + o(N~1/2).

Hence,

1 — F(q(an) +yn) _ yl/ko 1—F(q(an) 1-F(qlan))

T Fla(an) +x) N (= Flalan) Za)) (1~ F(glan))) PO B Hhon ko, i)

Now, we given that ) i
1-Flg(an)) | _  Flalan)) = Flg(an))

1— F(§(an)) 1 —F(q(an))

and from equation (14) in Lemma 2 we have

VA= FG@)) ([ poora— (1 - Flota )
Rl (0= Fla(an)) = (1= Flg(an)  N(0,1)

as q(an) — o0. In particular, using the notation adopted in Lemma 2 we have that

\/n(l B F(Q(an)) ~
1— F(q(an)) (1—F(q(an)) — (1 - F(q Z \/n 1— ) (@1 — E(qin)) + 0p(1)
Zn: Zig + Op
Hence,

L— Flglan) +yn) | _ pimo_ 1= Fla(an)) 1 - F(q(an))
1— F(q(an) +yn) N (1= F(q(an)Zn)) (1 — F(d(an)))
+ h(on, ko, yn)) — 1

exp(_h(a-Na ];:’ yN)

and by equation (24) and the mean value theorem we have

exp(—h(Gn, k,yn) + h(on, ko, yn)) = 1 — (WG N,k yn) — h(on, ko, yn)) + 0p(N~1/3).

Therefore, we write

m(l—ﬁ’(q(an)+yN) _1> :\/N<Z}V/k° 1 — F(q(an)) _1>

1— F(q(an) + yn)

+ 0,(1).

Since VN (Z ( l/ko% — 1) — —% we focus on the joint distribution of the last
two terms. By equation (24) we have that

v —1

(25) vﬁv0x5N,%,yN)—fmaN,mhyN)):civﬁv( P ke >-+opa)
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and by Theorem 1 (adopting its notation) we have
VNI CUN () 0,1 [on(ke) — VN [ 7).
k — ko bk by

where the last vector in this equality depends on v/ %q)(a”) which is asymptotically dis-

tributed as Y- | Ziz + 0,(1), 31, Zio and Y1 | Z;1. Hence, we define v N (ngi) — 1) =
Sy Ziay let 0 # d € R,

n = ( Y1 Zin i1 Zio Yoim1Ziz Y1 Zia )

€

and consider d’e,, = > 1, Z§:1 Zisds = > | Zni. Note that Z,; forms an iid sequence with
E(Z,i) = 0 and the asymptotic behavior of Y I | Z;1, Z?:l Zio and Y. | Z;3 was studied in
Theorem 1. In addition the asymptotic behavior of > 7" ; Z;4 was studied in Lemma 2. Recall that
E(Z%) = n Y (F(yn)+o(hay)) and from Theorem 1 E(Z;j1 Zi4) = o(n™') and E(Zi2Zis) = o(n™1).
Here we examine

ko 1 ralan) y—U;
Pt = ‘n<<1—F(yn>><1—F<q<an>>>>l/2E(‘”"hzn [, )dy>

— E(qn)E | — K dy | .
(ql ) <h2n [m ? ( hon, ) y)
By Lemma 2 E(q1,) — F(yn) = O(hy:!) and similarly we have E (% fgg‘é’l) Ky (%) dy) _

F(q(an)) = O(hh:th). Since in Lemma 2 we have y,, = q(ay) + 02, then for r(z) = hy! [T Ko

(yh;?{ ) dy we can write

E <Q1n T [ Ky ( s ) dy) = E(r(q(an) + on2)k(q(an))) (X{g(an)=yn} + X{a(an)2vn})-
For z > 0 we have that ¢(ay) # y, implies y, > ¢(a,) so that
E(r(q(an) + Unz)’f(Q(an))X{q(ankyn}) < CX{q(an)<yn} = C (F(q(an) + onz) — F(q(an))) -

By FR2 lim,, oo U E2p2l=lala)) — 0, hence

(1= F(g(an))) ™" E(s(g(an) + onz)(a(an))X{g(an)=ya}) = 0(1)

and
1 q(an) —-U;
E (‘-’h [ (M )dy) — B (*(g(an)) +o(1 ~ Flg(an))):
Consequently,
ko
B 2) = ~ T~ FlaGan7e (2 (0D + olFlaten)
~ F{a(an)) + OU™) = = (Flg(an)) + o(1)
e e A
and V(Zin) = %d/%dJr o(n*l) where V3 = _(ko—l())%%o—l) (ko—l)(()%o—l) k(:]% _(2:0
0 0 —ko 1

From the verification of Liapounov’s condition in Theorem 1 we have that d'e), 4N (0, d'Vad)
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and from the Cramer-Wold theorem &, <N (0, V3). Now, from equation (25)
b

o /rr—1 ba
o)) (i)

hence by letting A ; represent the 4t column of a matrix A, we write

vy (1 : §EZEZ:; izZ§ - 1) - _W B (chEl ; Zin+ c,Hy' ; Zio

\/N(h(é'N, l;:,yN) — h(o‘N, ko,yN)) = Cg)ff_1 (vN(l, k‘o) — \/N (

n
+ (C;)Hilbl + C;)H_Elbz) Z 73
=1

+ ch_1\/N< ZZ )) +zn:Zi4+0p(1)

=1

_ _k(za),uc('a_p) —CgH_l\/N< ZZ )

+ (= HT' —cHG' —HT b — G Hby 1 ) e+ 0p(1).

Let n/ = ( —HT' —cHy' —c,Hy'b — c,Hy' by 1 ), then from the results above we

have n'e, 4N (0,7'V3n) where simple algebraic manipulations give n'Van = c,H 1VoH e, +
9 _ B _

2¢, ( Ko )—l—l. Consequently, if  ~ N (—k(za)’é(o‘p), c,H 'VoH ey, + 2¢], ( 2= ko > + 1),

e 1— kg
1= F(glan) +yn) o (| bo A
VN (1 — F(q(an) + yn) ! ( ot < i ))) ¢
and for yy = q(a,)(Zy — 1) with Zy — 2, we immediately have
1 — F(q(a) + 0,2) )1 [ bo d
W<1—F(Q(a)+an2)_1_<_CbH (bk )))HC.

Lastly, since =W, /ko + o(1) = \/n(1 — F(q(a))) (% — 1) and if

V(1 = F(g(a))) = /n(1 —a) o NV/2,

that is, n(1 — a) — oo at the same rate as N, then

N A

k2 <c’bH—1V2H—1cb + 2¢, ( f B ’ZO ) + 1))
— RO

which immediately gives, \/n(1 — a) (% - 1) 4, ¢1 where

G~ N ((—ko) (—W —cpH ( ZZ )) !

k2 <c;,H—1V2H—1cb + 2¢} ( f B ZO ) + 1)) .
— R0

then
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Appendix 2 - Tables and figures.

TABLE 1 MEAN(M), BiAs(B) AND STANDARD DEVIATION(S)FOR PARAMETER ESTIMATORS

WITH LOG-GAMMA DISTRIBUTED U WITH a =1, 3 = 0.25 (kg = —4)
N =50 m(z) = 3sin(3x) m(z) = x?
ON ko ON kO

estimators M S M B S M S M B S

4 470 113 -.200 3.800 .199 469 .111 -.200 3.800 .199

v 430 107 -.221  3.779 .203 440 .108 -.220 3.780 .204

kh -.562 3.438 .077 -.634 3.366 .082
N =100 m(x) = 3sin(3z) m(z) = 22

ON ko ON ko

estimators M S M B S M S M B S

o A57 074 -.223 3.777 132 456 .074 -.223 3.777 .133

¥ 431 .073 -.238 3.762 .135 .441 .073 -.233 3.767 .134

kh -.602 3.398 .057 -.647 3.353 .058

TABLE 2 MEAN(M), Bias(B) AND STANDARD DEVIATION(S)FOR PARAMETER ESTIMATORS

WITH LOG-GAMMA DISTRIBUTED U WITH av = 1, = 0.5 (kg = —2)
N =50 m(x) = 3sin(3x) m(z) = 2?
ON ko ON kO

estimators M S M B S M S M B S

o 1.673 445 -454 1.546 227 1.670 .443 -.452 1.548 .227
v 1.572 431 -476 1.524 228 1.589 .433 -.468 1.532 .232
kh -.888 1.112 .133 -896 1.104 .133
N =100 m(z) = 3sin(3x) m(z) =
oN ko ON ko

estimators M S M B S M S M B S

1.626 .301 -.478 1.522 .154 1.615 .300 -.483 1.517 .155

1.569 .300 -.490 1.510 .158 1.563 .293 -.494 1.506 .157
-.899 1.101 .096 -.900 1.100 .095

;E,‘)QI 2
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TABLE 3 MEAN(M), Bias(B) AND STANDARD DEVIATION(S)FOR PARAMETER ESTIMATORS

WITH STUDENT-T DISTRIBUTED U WITH v = 3 (ko = —1/3)
N =50 m(x) = 3sin(3z) m(z) =
ON ko ON ko

estimators M S M B S M S M B S

Ay 992 228 -.204 129 .204 990 .225 -.206 .128 .202
v 959 228 -210 124 .206 .960 .225 -.211 .122 .205
k" -455 -.122  .063 -.461 -.128 .063
N =100 m(z) = 3sin(3x) m(z) = 22
ON ko ON ko

estimators M S M B S M S M B S

961 .155 -.235 .099 .136 .968 .154 -.229 .104 .136

940 152 -.238 .095 .137 .949 .156 -.233 .101 .137
-.460 -.127 .045 -.463 -.130 .045

T

TABLE 4 MEAN(M), B1as(B) AND STANDARD DEVIATION(S)FOR PARAMETER ESTIMATORS

WITH STUDENT-T DISTRIBUTED U WITH v = 2 (kg = —1/2)
N =50 m(x) = 3sin(3x) m(z) = z?
oN ko ON ko

estimators M S M B S M S M B S

4 1.337 332 -.405 .095 222 1.335 .336 -.406 .094 .226
ot 1.294 1.110 -.416 .084 .227 1.293 .417 -414 .086 .231
kP -.565 -.065 .088 =571 -.071 .089
N =100 m(z) = 3sin(3x) m(z) = 22
ON ko ON ko

estimators M S M B S M S M B S

1.302 .226 -.430 .070 .152 1.301 .228 -.429 .071 .155

1.272 235 -435 .065 .153 1.276 .271 -.434 .066 .158
-575 -.075 .064 =577 -.077 .065

o
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TABLE 5 B1AS (x0.1)(B), STANDARD DEVIATION(S) AND ROOT MEAN SQUARED
ERROR(R) FOR QUANTILE ESTIMATORS WITH m(x) = 3sin(3z), AND

LOG-GAMMA DISTRIBUTED U WITH a = 1, = 0.25 (kg = —4)

N =50 a=0.95 a = 0.99 a = 0.995
estimators B S R B S R B S R
q° 076 .099 .099 -.117 .286 .287 -.248 .494 .495
q 1.047 .080 .132 .280 .260 .262 -.040 .465 .465
q" 402 .061 .073 2.190 .320 .388 6.223 .634 .888
q° 841 .082 118 -.182 .309 .310 -.944 .498 .507
N =100 a=0.95 o =0.99 a = 0.995
estimators B S R B S R B S R
q° .028 .067 .067 -.098 .198 .198 -.207 .337 .338
q 589 .056 .081 .091 .182 .183 -.136 .319 .320
qh -.048 .043 .043 2.285 .235 .328 7.111 476 .856
q° 488 .059 .077 -.155 .223 .223 -.695 .380 .386

TABLE 6 B1as(x0.1)(B), STANDARD DEVIATION(S) AND ROOT MEAN SQUARED
ERROR(R) FOR QUANTILE ESTIMATORS WITH m(z) = 22, AND
LOG-GAMMA DISTRIBUTED U WITH a =1, = 0.25 (kg = —4)

N =50 a=0.95 a = 0.99 a = 0.995
estimators B S R B S R B S R
q° .059 .097 .097 -.162 .286 .287 -.304 496 .497
q 265 .081 .085 -.305 .264 .266 -.512 .476 .479
q" -.445 .060 .075 2.358 .349 421 8.088 .727 1.088
q° 103 .084 .084 -.691 .316 .323 -1.38 .510 .528
N =100 a=0.95 o =0.99 a = 0.995
estimators B S R B S R B S R
q° 029 .069 .069 -.122 .202 .202 -.246 .342 .342
q 195 .058 .061 -.162 .189 .190 -.339 .329 .330
q" -.504 .044 .067 2.525 .249 .355 8.481 .515 .992
q° 112 .062 .063 -.383 .230 .233 -.916 .380 .391

33
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TABLE 7 B1as(x0.1)(B), STANDARD DEVIATION(S) AND ROOT MEAN SQUARED
ERROR(R) FOR QUANTILE ESTIMATORS WITH m(x) = 3sin(3z), AND

LOG-GAMMA DISTRIBUTED U WITH a =1, = 0.5 (ko = —2)
N =50 a=0.95 a=0.99 a = 0.995
estimators B S R B S R B S R
q° 315 420 421 183 1.919 1.919 1.188 4.059 4.060
q 362 352 354 -1.345 1.773 1.778 -.615 3.869 3.869
" -2.431 249 348 15.508 2.564 2996 60.118 6.869 9.128
q° -.206  .360 .360 -3.625 2.096 2.127 -7.617 4.149 4.218
N =100 a=0.95 a=0.99 a=0.995
estimators B S R B S R B S R
q° 160 292 293 126 1.309 1.309 .554 2,672 2.673
q 220 250 251 -.799 1.220 1.222 -554 2.586 2.586
q" -2.493 180 .307 15.757 1.753 2.357 59.571 4.545 7.493
q° -.054 266 .266 -2.174 1.475 1490 -4.803 2972 3.010

TABLE 8 B1as(x0.1)(B), STANDARD DEVIATION(S) AND ROOT MEAN SQUARED
ERROR(R) FOR QUANTILE ESTIMATORS WITH m(z) = 2%, AND

LOG-GAMMA DISTRIBUTED U WITH a =1, = 0.5 (ko = —2)
N =50 a=0.95 a=0.99 a=0.995
estimators B S R B S R B S R
q° 315 416 417 -.008 1.911 1.910 .799  4.028 4.028
q JB13 0 351 362 -1.447 1771 1.777 -983  3.898 3.899
q" -2.564 250 .368 16.226 2.542 3.015 62.467 6.735 9.185
q° -.248  .363 .364 -3.928 2.097 2.133 -7.384 4.169 4.233
N =100 a=0.95 a =0.99 a = 0.995
estimators B S R B S R B S R
q° A15 0 .291 291 183 1.323 1.323 959  2.714 2.716
q 160 247 248 -.681 1.230 1.232 -.111 2.621 2.621
q" -2.517 179 309 15.776 1.743 2.351 59.676 4.514 7.482
q° -108  .260 .261 -1.836 1.495 1.506 -4.241 3.075 3.104
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TABLE 9 B1as(x0.1)(B), STANDARD DEVIATION(S) AND ROOT MEAN SQUARED
ERROR(R) FOR QUANTILE ESTIMATORS WITH m(x) = 3sin(3z), AND

STUDENT-T DISTRIBUTED U WITH v = 3 (kg = —1/3)
N =50 a=10.95 a=0.99 a = 0.995
estimators B S R B S R B S R
q° 099 202 .203 .155  .641 .641 -.227 1.136 1.136
q 504 182 188  -.002 .600 .600 -.628 1.086 1.088
q" -.658 147 161 2.528 .646 .694 7.728 1.175 1.406
q° .038 .188 .188 -1.616 .676 .695 -3.075 1.151 1.191
N =100 a=0.95 a=0.99 a = 0.995
estimators B S R B S R B S R
q° -.001 .141 .141 299 443 444 075 771 771
q 247 123 125 185 416 417 -196 .T43 743
q" =753 099 124 2.529 451 517 7.738 816 1.124
q° 013 129 129 -918 491 500 -1.938 .848 .870

TABLE 10 BI1As(x0.1)(B), STANDARD DEVIATION(S) AND ROOT MEAN SQUARED

ERROR(R) FOR QUANTILE ESTIMATORS WITH m(z) = 22, AND

STUDENT-T DISTRIBUTED U WITH v = 3 (kg = —1/3)
N =50 a=0.95 a=0.99 a = 0.995
estimators B S R B S R B S R
q° 116 0199 199 203 638 .638 -.143 1.133 1.133
q .260 175 176 -.158  .602 .602 -.708 1.097 1.100
qh -906 .140 .167 2.461 .647 .693 7.907 1.183 1.423
q° -.167 180 .181 -1.622 .690 .708 -3.081 1.175 1.215
N =100 a =095 a=0.99 a = 0.995
estimators B S R B S R B S R
q° 063 .144 144 325 441 442 -.000 .765 .765
q 222 127 129 184 420 .420 -.260 .741 .741
q" -.818 103 .131 2.637 .459 530 8.033 829 1.154
q° -.017 135 135 -.867 .496 .503 -1.948 852 .874

35
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TABLE 11 BIAs(x0.1)(B), STANDARD DEVIATION(S) AND ROOT MEAN SQUARED

ERROR(R) FOR QUANTILE ESTIMATORS WITH m(x) = 3sin(3z), AND

STUDENT-T DISTRIBUTED U WITH v = 2 (ko = —1/2)
N =50 a=0.95 a=0.99 a=0.995
estimators B S R B S R B S R
q° 192 318 319 579 1.362 1.363 711 2794 2.795
q 986 958 963  .326 1.807 1.807 .050  2.990 2.990
q" -.188 .716 .716 3.335 2.717 2.737 10.080 4.915 5.017
q° 386 943 944 -2.337 1922 1936 -4.831 3.139 3.176
N =100 a=0.95 a=0.99 a=0.995
estimators B S R B S R B S R
q° 071 219 219  .636 957 959 545 1.919 1.920
q 549 248 254 493 929 930 125 1.872 1.872
q" -458 216 221 3.289 980 1.034 10.047 1.929 2.174
q° 230 262 263 -1.255 1.092 1.099 -3.146 2.198 2.220

TABLE 12 Bi1As(x0.1)(B), STANDARD DEVIATION(S) AND ROOT MEAN SQUARED

ERROR(R) FOR QUANTILE ESTIMATORS WITH m(z) = 2%, AND

STUDENT-T DISTRIBUTED U WITH v = 2 (ko = —1/2)
N =50 a=0.95 a=0.99 a=0.995
estimators B S R B S R B S R
q° 163 315 315 B35 1.380 1.381  .768  2.874 2.875
q 793 673 678 205 1456 1.456 .016 2.869 2.869
q" -399 614 6156 3.327 1.548 1.583 10.439 2.907 3.089
q° 201 669 .669 -2.653 1.653 1.674 -5.002 3.203 3.241
N =100 a=0.95 a =0.99 a = 0.995
estimators B S R B S R B S R
q° 081 .220 .220  .565 957 958 430 1.923 1.924
q 492 255 260  .450 946 947 109 1.920 1.920
q" -.533 208 215 3.342 1.021 1.074 10.297 2.021 2.268
q° A73 0 .261 262 -1.108 1.165 1.170 -3.326 2.208 2.233
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quantile (on log scale)

[e3

04 L L L L L L L L L
0.955 0.960 0.965 0.970 0.975 0.980 0.985 0,990 0.995 1.000

o

Fic 1. Plot of quantile estimates across different o, with n = 1000, N = 100, m(z) = 3sin(3z) and student-t
distributed U with v = 2. 1 : true quantile, 2 : 4, 3 : q", and 4 : ¢°.
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N

F1G 2. Bias of 99% quantile estimators with different N, with n = 1000, m(x) = 3sin(3z) and student-t distributed
Uwithv=2.1:¢°,2:4,3:¢", and 4: ¢°.
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F1c 3. Root mean squared error of 99% quantile estimators with different N, with n = 1000, m(z) = 3sin(3z)

RMSE

MARTINS-FILHO ET AL.
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and student-t distributed U with v =2.1:¢%, 2:§, 3:q¢", and 4 : ¢°.
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